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The behaviour of a mechanical structure in the lower frequencies is dominated by
constraints at the boundaries. Most structures have elastic supports and specifying the
boundary conditions requires knowledge of the support parameters. In this paper, a new
method is developed to determine the boundary parameters based on the solution of
reduced order characteristic equations. The order of these non-linear equations is equal to
the number of boundary degrees of freedom which is a small fraction of the order of the full
structure and means that the amount of computation is not excessive. In this approach, no
ill-conditioning occurs, which is a common problem in other identi"cation procedures. The
method is demonstrated by identifying the boundary parameters of a plate on elastic
supports by using experimental test data.
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1. INTRODUCTION

Boundary conditions have an important role in the dynamic behaviour of structures and
should be considered carefully in theoretical studies and structural analysis. The "nite
element method is widely used to obtain a theoretical estimate of structural responses. The
general procedure is to apply idealized constraints or to make use of previous experience in
modelling apparently similar boundaries. The result of this approach is that many "nite
element models fail to represent boundary sti!nesses to an acceptable accuracy and
consequently errors are produced in "nite element predictions. One solution is to identify
the boundary conditions from experiments carried out on the physical structure.

Boundary conditions may be determined by using conventional identi"cation or
updating methods [1]. Methods based on the error in the equations of motion, matrix
perturbation or sensitivity are typical and can be used in either the modal or frequency
domains. In the former approach, the equation of the motion of the system is formed at the
measured frequencies using the measured displacements. These equations are rearranged to
form a set of overdetermined linear equations in the unknown parameters. The spatial
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model is then obtained by minimizing the residual of the rearranged equations. The
inconsistency between the order of the analytical model and that of the test model can be
removed by expansion or reduction techniques. In many cases, measurement errors and
ill-conditioning lead to unsatisfactory estimates of the spatial model [2, 3] by the equation
error method. Measured displacements at &&"xed'' boundaries contain the highest levels of
error because of the low level of displacement at these locations, i.e., the single-to-noise ratio
is relatively low. Measurement errors at the boundaries produce large variations in
estimates of boundary parameters.

In the matrix perturbation method described by Chen and Garba [4], it is usual for the
number of parameters to exceed the number of equations of motion. Consequently, the
equations are underdetermined and the analyst selects a solution based on a statistical
estimate of the errors in the measurement and in the initial parameters. Therefore, the
success of the method is highly dependent on experience and understanding of the test
structure.

Perhaps the most popular method in the determination of boundary parameters is the
sensitivity method [5]. The di!erence between model predictions and test observations is
de"ned using linearized "rst order sensitivities. An iterative identi"cation procedure is used
to compensate the linearization e!ects. Although the sensitivity method in general produces
better results than the other methods described above, it has also some shortcomings. It is
known that sensitivity of modes to the boundary parameters is reduced as the
higher-frequency modes are reached [6]. The insensitivity of higher modes along with
linearization e!ects can cause convergence di$culties.

This paper considers a new method for the identi"cation of structural boundary
conditions which relies on the measured natural frequencies of the structure. A set of
characteristic equations is formed. The number of these equations is equal to the number of
measured natural frequencies but the order of each equation is equal to the order of the
support or boundary model, which is much smaller than the order of the model of the
complete structure. The method does not use the measured mode shapes, which are usually
inconsistent with the order of the analytical model and may be in error especially at nodes
close to a restrained boundary.

The essence of the method is as follows. The e!ect of an elastic support can be simulated
using a set of nodal forces on the boundary of a free structure. Using the "nite element
model, a relationship may be established between nodal forces and nodal displacements
at the boundary for each vibration mode. The support sti!ness is also de"ned by a
force}displacement relationship. The two systems of equations can then be combined to
identify the parameters of the boundary support.

The theory of this new technique is developed in section 2. The method is then illustrated
in section 3 using a numerical simulation of the boundary conditions of a beam with an
unknown elastic support at one end. Sensitivity of the identi"cation method to random
measurement errors is examined by perturbation of the input data. To demonstrate the
actual performance of the method an experimental set-up was developed. In the set-up,
a steel plate was supported using a rubber seal with unknown sti!ness properties. The test
arrangement, experimental results and identi"cation procedure are reported in section 4.

2. THE IDENTIFICATION METHOD

Consider the equilibrium equation of a freely vibrating mechanical structure with elastic
supports. The boundary conditions may be introduced to the model by adding the support
sti!ness to the sti!ness matrix of the model. The alternative is to constrain the boundary
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motion by applying reaction forces at the boundary nodes. Using the second option, the
equation of motion can be written as
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where D"K!u2 M is the known dynamical sti!ness of an unconstrained structure,
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the unknown reaction force at the boundary. The
force}displacement relationship on the boundary can be established from equation (1) as
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which is similar to the dynamic reduction formula. Also, the same boundary forces and
displacements are related by the boundary sti!ness K
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Note that in the above expression the mass properties of the support are neglected. To
eliminate the unknown reaction forces, equations (2) and (3) may be added to obtain the
following relationship:
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Equation (4) can be re-arranged in terms of unknown parameters in sti!ness matrix K
b
.

Then these parameters can be identi"ed using the resulting system of linear equations.
However, the drawback of this approach is that it requires measured values x

b
.

Unavoidable measurement errors in boundary displacements lead to an unstable
identi"cation procedure. The following o!ers an alternative approach to avoid using
boundary displacements in the identi"cation procedure.

In an elastic boundary x
b
is a non-zero vector, therefore the coe$cient matrix in equation

(4) must be singular, i.e.,
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This characteristic equation can be formed for each mode and a set of non-linear equations
is established to identify the entries of K

b
. The order of each polynomial in terms of

unknown support parameters is equal to the order of the matrix K
b
. For example, the order

of each characteristic equation, in the case of a beam with two degrees of freedom on each
node elastically supported on one end and free on the other, is two. These equations may be
solved by the usual non-linear algorithms.

The main advantage of the new method is that no ill-conditioning occurs during the
identi"cation procedure. A set of solutions for the boundary parameters is obtained by
solving equation (5) for each measured mode. A unique solution is obtained by selecting the
one that satis"es equation (5) for all measured modes. The following numerical study
demonstrates practical aspects of the proposed method.

3. NUMERICAL EXAMPLE

A uniform beam free at one end and elastically supported at the other end as shown in
Figure 1 was chosen to demonstrate the capability of the proposed method in identifying
elastic support parameters. The elastic support consists of a translational spring, k

1
"10

and a rotational spring, k
2
"5. The beam has a length of ¸"5, #exural rigidity EI"1,

and mass per unit length of oA"1. A "nite element model of the structure with



Figure 1. Beam with elastic support.

Figure 2. Solutions for k
1

and k
2

that satisfy the characteristic equation.
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5 Euler}Bernoulli beam elements supported at one end with k
1

and k
2

was developed and
its natural frequencies were determined. Using the sti!ness and mass matrices of the beam
when no boundary condition is applied and the natural frequencies of the restrained beam,
the dynamic sti!ness matrix D was developed for the "rst "ve modes. Then by solving
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a set of boundary sti!nesses k
1

and k
2

is determined for each mode. Figure 2 shows the
acceptable solutions for each of the "rst "ve modes. The solution which satis"es all modes
requirements namely, k

1
"10, k

2
"5 is the answer to the problem.



Figure 3. Acceptable solutions for k
1

and k
2
*noisy data.
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Next, the natural frequencies were perturbed each within $2% in a random manner.
The results of the identi"cation procedure are shown in Figure 3. As may be expected there
is no unique solution that satis"es all the requirements for every mode. However, the results
indicate a set of solutions close to the exact values. A solution may be chosen from these
results based on the quality of measurement and the accuracy of each measured mode. In
general, more weight should be put on the lower modes as they are more sensitive to the
boundary parameters. The following section deals with the problem of boundary-condition
parameter identi"cation from a physical experiment.

4. IDENTIFICATION OF A RUBBER SEAL MODEL

In the next step, the capability of the proposed method is veri"ed by the identi"cation of
a rubber seal model. The rubber seal in the experiment is the same type that is used to hold
the windscreen to a car body frame. The identi"cation of the rubber seal parameters is
important because of noise produced by windscreen vibration. These parameters have been
identi"ed by the authors using a sensitivity approach [7]. Here the same parameters are
identi"ed using the new method.

The experimental set-up used in this study consisted of a 0)5 m]0)8 m steel plate with
a thickness of 2)5 mm grounded using a rubber seal as shown in Figure 4. The "rst "ve
lateral vibration modes of the plate restrained with the rubber windscreen-seal were
measured and are listed in Table 1. A "nite element model of the plate with mesh of 5]8
was also developed. A model with the lowest level of discretization error [8] was used for
each plate element. Such elements can be considered to be one of a family having a generic
formulation [9]. To complete the model it is necessary to specify the rubber seal. In the
following, it is shown how such a model can be identi"ed using the method proposed in
section 2.



Figure 4. Experimental structure.

TABLE 1

Measured and predicted modes

Mode no. Measured (Hz) Predicted (Hz) Error (%)

1 33)39 32)37 !3)3
2 60)61 58)80 !2)9
3 100)71 100)23 !0)5
4 106)23 102)69 !3)3
5 128)19 124)43 !2)9
6 162)33 163)90 0)1

Figure 5. Elastic support element.
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The "rst step in the identi"cation procedure is the modelling of the rubber seal. To choose
an appropriate model a rubber-seal element with the degrees of freedom w, a"dw/dy,
b"dw/dx as shown in Figure 5, may be considered.

The rubber seal acts as a distributed elastic support along the edge of the plate and
displacement functions for the beam are chosen which match those of the plate. Thus, for
motion in w, b
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where
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The above shape functions are consistent with well-known plate element formulations [8,
10}12]. The characteristic dimensions Dx and Dy are described in Figure 4. The following
positive-de"nite matrices are obtained:
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Equations (8) and (9) have a form similar to the mass matrix of a conventional Hermitian
beam element because they represent an elastic foundation. This is because the shape
functions, rather than their spatial derivatives, are used in the element formulation, and
since the rubber-seal element is grounded on one side it has no rigid-body modes.

Twenty-six, 2](5#8), rubber-seal elements were used to support the plate. The support
sti!ness, K

b
, formed by assembling the rubber-seal elements, has two unknown parameters,

k
w

and ka, which represent distributed lateral and torsional sti!nesses. Negligible torsional
sti!ness is provided by the rubber seal because of its geometry and therefore ka is set to zero.
The remaining parameter is identi"ed by the solution of characteristic equation
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for the "rst six measured modes of the experimental set-up. The matrix D in the above
expression is the dynamic sti!ness matrix of the free plate at measured frequencies.
Figure 6 shows the solution of the above expression for the "rst six measured modes.
Singularity of the matrix K
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is denoted by the peaks on each of the six

curves, which represent the characteristic equations for the "rst six modes. A cluster of
peaks can be observed between values of 20 and 30 for the non-dimensionalized support
parameters. Five of the six peaks lie between 25 and 30. The slightly outlying mode is the
sixth mode (the highest frequency). It is not particularly signi"cant that this mode has two
peaks (two solutions of the determinantal equation) close to 20.

The support parameters are most important in the lower modes and are less signi"cant in
the higher modes. For this reason the "rst six measured modes were chosen in the
identi"cation procedure. When the eigenvalues are found from the model with the identi"ed
parameters, a good correlation can be seen between the predictions and test data. Table 1
shows the "rst six modes of the model with an identi"ed non-dimensional support
parameter of 26. The support sti!ness is non-dimensionalised by dividing by the



Figure 6. Solution of the characteristic equation*rubber-seal identi"cation.
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unconstrained plate sti!ness between two adjacent boundary nodes. But, from Figure 6 it is
clear that the solutions of the characteristic equations are scattered, though fairly closely
scattered, around the value of 26 for the di!erent modes. Therefore the e!ect of
a measurement error in the range of $3% on the natural frequencies was investigated. The
most sensitive modes were 3 and 6 which showed a range of identi"ed support sti!nesses of
$10 (non-dimensional) over the frequency range. For the other modes very large
parameter changes produce similarly small deviations in the natural frequencies. It can
therefore be concluded that the scatter shown in the peaks of the curves in Figure 6 can be
attributed to very small errors in the measured natural frequencies.

5. CONCLUSION

A method is developed to identify the boundary conditions of a structure using modal
testing data. The method requires a "nite element model before applying boundary
conditions, and the natural frequencies of the physical structure constrained at its
boundaries. A boundary sti!ness matrix is identi"ed to reconcile the two sets of inputs. It is
shown using test cases that the method is robust in dealing with measurement errors and the
resulting set of equations is well conditioned.

REFERENCES

1. J. E. MOTTERSHEAD and M. I. FRISWELL 1993 Journal of Sound and <ibration 167, 347}475.
Model updating in structural dynamics: a survey.

2. H. AHMADIAN, J. E. MOTTERSHEAD and M. I. FRISWELL 1998 Mechanical Systems and Signal
Processing 12, 47}64. Regularisation methods for "nite element model updating.



BOUNDARY CONDITION IDENTIFICATION 763
3. M. I. FRISWELL, J. E. MOTTERSHEAD and H. AHMADIAN 1998 Journal of <ibration and Acoustics,
American Society of Mechanical Engineers ¹ransaction 120, 854}859. Combining subset section
and parameter constraints in model updating.

4. J. C. CHEN and J. A. GARBA 1980 American Institute of Aeronautics and Astronautics Journal 18,
684}690. Analytical model improvement using modal testing results.

5. R. GHANDHI 1993 American Institute of Aeronautics and Astronautics Journal 31, 2296}3203.
Structural optimisation with frequency constraint*a review.

6. R. COURANT and D. HILBERT 1953 Methods of Mathematical Physics. New York: Interscience
Publishers Inc.

7. H. AHMADIAN, J. E. MOTTERSHEAD and M. I. FRISWELL 1997 Proceedings of the 15th
International Modal Analysis Conference, Kissmme, ;.S.A. 142}146. Parameterisation and
identi"cation of a rubber seal.

8. H. AHMADIAN, M. I. FRISWELL and J. E. MOTTERSHEAD 1998 International Journal for Numerical
Methods in Engineering 41, 371}387. Minimisation of the discretisation error in mass and sti!ness
formulations.

9. G. M. L. GLADWELL and H. AHMADIAN 1998 Mechanical Systems and Signal Processing 12,
47}64. Generic element matrices suitable for "nite element model updating.

10. R. J. MELOSH 1963 American Institute of Aeronautics and Astronautics Journal 1, 1631}1637. Basis
for derivation of matrices for the direct sti!ness method.

11. O. C. ZIENKIEWICZ and Y. K. CHEUNG 1964 Proceedings of the Institution of Civil Engineers 28,
471}488. The "nite element method for the analysis of elastic isotropic and orthotropic slabs.

12. F. K. BOGNER, L. R. FOX and L. A. SCHMIT 1965 Proceedings of the Conference on Matrix
Methods Structural Mechanics, AFI¹,=right-Patterson A. F. Base, OH, 397}443. The generation
of interelement compatible sti!ness and mass matrices by the use of interpolation formulas.


	1. INTRODUCTION
	2. THE IDENTIFICATION METHOD
	3. NUMERICAL EXAMPLE
	Figure 1
	Figure 2
	Figure 3

	4. IDENTIFICATION OF A RUBBER SEAL MODEL
	Figure 4
	TABLE 1
	Figure 5
	Figure 6

	5. CONCLUSION
	REFERENCES

