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Combining Subset Selection 
and Parameter Constraints 
in Model Updating 
Model updating often produces sets of equations whose solution are ill-conditioned 
and extra information must be used to produce a well-conditioned estimation problem. 
One possibility is to change all the parameters, but to introduce extra constraints, 
for example by taking the minimum norm solution. This paper takes a different 
approach, by considering only a subset of the parameters to be in error. The critical 
decision is then the choice of parameters to include in the subset. The methods of 
subset selection are outlined and extended to the selection of groups of parameters. 
The incorporation of side constraints is considered and demonstrated using an experi­
mental example. 

Introduction 
Finite element model updating has become a viable approach 

to increase the correlation between the dynamic response of 
a structure and the predictions from a model (Frisweli and 
IVIottershead, 1995; Mottershead and Friswell, 1993). In model 
updating there are often many candidate parameters which could 
be used to reproduce the changes in the model. With a limited 
amount of measured information, extra constraints have to be 
applied to produce a well conditioned parameter estimation 
problem. One approach is to allow all the parameters to change, 
but to minimize these changes in some way, often in a minimum 
norm sense. The alternative approach adopted here is to assume 
that all the parameters are not necessarily in error and to try to 
estimate, using the measured data, which parameters should be 
changed. This implies that parts of the structure are assumed 
to be modeled well and parts of the structure are modeled 
poorly, but which parts fall into each category is not known. 
For example, if the location of errors in a space frame structure 
model is required, then the complete set of parameters might 
consist of the stiffness of the constituent spars and parameters 
related to the joints. It may be expected that only one or two 
of these spars are modeled incorrectly, possibly because of dam­
age, and hopefully the corresponding parameters would be cho­
sen by the following procedure. Joints are often difficult to 
model. One approach is to include many possible parameters 
of the joint relating to different physical mechanisms and deter­
mine which is the most appropriate to reproduce the measured 
data. Damage location is an obvious application of this ap­
proach. The selection of a suitable subset of parameters for 
estimation is well established in the statistical literature (Millar, 
1990) and the method has also been used in structural dynamics 
(Lallement and Piranda, 1990), for actuator location (Ruckman 
and Fuller, 1995) and for damage detection (Friswell et al., 
1996a, Fritzen et al., 1996). 

The standard problem of subset selection may be stated as 
follows: given the following set of w equations in the p parame­
ters d 

A0 = b (1) 

where A is an « X p matrix and b is a vector of length n, find 

the subset of parameters that produces the smallest residual. 
Typically, for error localization in model updating, there are 
many more parameters than measurements (p > n). Although 
using mode shapes or frequency response functions it may be 
possible to produce an over-specified set of equations, in general 
the solution to these equations will be ill-conditioned. Physically 
this means that there is insufficient information in the measured 
data to identify all the parameters. 

A number of possibilities exist to generate the equations in the 
unknown parameters (Friswell and Mottershead, 1995). These 
equations may be generated by considering input, output, modal 
or other residuals (Fritzen, 1986). General equations using any 
residual may be generated by using perturbations from the mod­
eled quantities and employing a Taylor series. Although this 
approach is very general in the measured data and parameters 
used, the resulting residuals are often highly nonlinear in the 
unknown parameters. The measured data may be assembled 
into a vector z,„. Let z represent the predictions from the model, 
in the same form as the measurements. Then, neglecting the 
higher order terms, the measured data may be written as 

S0 = (2) 
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where 0 is the vector of parameter values and S is the sensitivity 
matrix, which contains first order derivatives of the measured 
quantities with respect to the parameters. Equation (2) has the 
same form as Eq. (1). Usually the equations will be weighted. 
For example, if natural frequencies were used directly in Eq. 
(2) then the higher frequencies will effectively be weighted 
more highly. Using relative (or percentage) changes in the natu­
ral frequencies is a good solution. The relative weighting be­
tween natural frequencies and mode shapes should recognize 
the relative uncertainty in each measurement. 

Regularization and Side Constraints 

In model updating there are often more parameters than mea­
surements leading to an ill-conditioned parameter estimation 
problem. Often regularization is used to generate parameters 
that have physical meaning (Ahmadian et al., 1998, Natke, 
1991, Fregolent et al., 1996). The alternative suggested in this 
paper is to retain only a subset of the parameters. Often a form 
of regularization is employed where constraints are placed on 
parameters. For example, in a frame structure a number of T 
joints may exist that are nominally identical. Due to manufactur­
ing tolerances the parameters of these joints will be slightly 
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different, although these differences should be small. Therefore 
a side constraint is placed on the parameters, so that both the 
residual and the differences between nominally identical param­
eters are minimized. Thus if Eq. (1) generates the residual, the 
parameter vector is sought which minimizes the quadratic cost 
function. 

J(0) = IIA6I - b f + \1C6» - d|| (3) 

for some matrix C, vector d and regularization parameter X. 
The regularization parameter is chosen to give a suitable balance 
between the residual and the side constraint. If two parameters 
are linked by a side constraint, then it would be sensible to select 
them together in the subset selection procedure, particularly if 
these parameters are nominally identical. For example, if there 
were only two parameters, which were nominally equal, then 

C = [1 - 1] d = [0] (4) 

of 
Minimizing Eq. (3) is equivalent to minimizing the residual 

A • 

\C (5) 

Equation (5) then replaces Eq. (1) , although with the signifi­
cant difference that Eq. (5) is generally over-determined, 
whereas Eq. (1) if often under-determined. 

Parameter Subset Selection 
The parameter subset selection methods essentially choose a 

subset of the parameters that minimizes a penalty function based 
on the norm of the residuals in Eq. (1) . Millar (1990) gave a 
good summary of the subset selection method. The important 
aspects for the application to structural dynamics will be out­
lined briefly. Millar also considered the statistical properties of 
the estimators, including the bias in the parameter estimates due 
to the selection procedure and due to the omission of parameters 
(named selection bias and omission bias). Millar also discussed 
in depth the trade-off between reduced bias but increased vari­
ance in the parameter estimates as the number of parameters is 
increased. 

The subset selection problem may be solved by using an 
exhaustive search of all possible subsets. This would indeed 
produce the global minimum of the penalty function for any 
given size of subset. Unfortunately the number of subsets rap­
idly increases with the number of potential parameters and the 
size of the subset. For problems of reasonable size the computa­
tion required for an exhaustive search is prohibitive. It is possi­
ble to use genetic algorithms for the optimization, but the bene­
fits of these methods have not been demonstrated conclusively 
in statistical methods of damage location (Friswell et al., 
1996b). 

The approach adopted in this paper is to assume that only a 
subset of the parameters in Eq. (1) are non-zero, or at least that 
only a subset of the parameters have corresponding independent 
columns of A. The optimum subset is chosen that minimizes 
the residual in Eq. (1). Lallement and Piranda (1990) used an 
iterative procedure to produce a sub-optimal solution, com­
monly known as forward selection. Among the columns of A, 
the single column is sought which best represents the vector b . 
If the columns of A are given by aj, so that A = [ai 3 2 . . . ap], 
then the selected parameter is that which minimizes the residual 

y = lib - ajdjf (6) 

where 9j is the least squares estimate of theyth parameter, and 

is 

Oj = ajh/ajaj. (7) 

Since b is a constant vector, minimizing the residual in Eq. (6) 

is equivalent to minimizing the angle between the vectors b 
and Sj, 4>j, where. 

cos' (fij = (aj'b)'/(aj'ay)(b^b) (8) 

Next the combination of two columns of A which constitutes 
the best sub-basis for the representation of b is determined. In 
the forward selection procedure the second parameter is ob­
tained in a sub-optimum way, by retaining the first parameter 
selected. Let_/i represent the first parameter selected and let the 
corresponding column of A be a ,̂. The optimum value for the 
7ith parameter is then 

= <b/a,>„ (9) 

The vector b - a;, §,, is then orthogonal to a,, and the subspace 
spanned by the columns of A that is orthogonal to â , must be 
searched. Thus the columns of A and the vector b are replaced 
with 

^JA (10) 

where a, = aj^aj/a][aj^ 
The procedure is now repeated on this reduced problem, to find 
the parameter 6j, for; =f= j], that gives the smallest residual, or 
equivalently the smallest angle (pj. 

An iterative process is then produced. Let m be the number 
of parameters selected. First, with m = 1 the single parameter 
that is best able to represent the data is selected. Subsequent 
iterations retain the parameters chosen in previous steps and 
select the parameter from those remaining that, together with 
those already chosen, is best able to represent the data. At each 
value of OT this represents a one dimensional optimization, rather 
than an m dimensional optimization in the general case, but the 
overall method is sub-optimal. 

Subset Selection and Matrix Decomposition 

Some authors have defined subset selection methods based 
on QR and SVD decompositions of the matrix A in Eq. (1) , 
(Golub and Van Loan, 1989, Chan and Hansen, 1992). The 
big difference between these general methods and the method 
outlined in this paper is the use of the data vector b . Golub and 
Van Loan (1989) and Chan and Hansen (1992) chose the subset 
of columns that are most independent, which ensures that the 
parameter estimation problem is well conditioned. This does 
not ensure that the residual of Eq. (1) will be small. Indeed a 
column could be chosen that is orthogonal to b and so does not 
help in the reduction of the residual. Although tests may be 
provided that determine how well the chosen subset performs, 
via the norm of the residual, the methods do not allow the 
choice of subset to be related to the minimization of the residual. 
One interesting fact from the SVD solution method is that if 
an m parameter subset is chosen, then the norm of the residual 
must be greater than that given by the solution obtained by 
retaining the m largest singular values (Golub and Van Loan, 
1989). This gives a lower bound on the norm of the residual 
that may be obtained for any subset of parameters. Chen et al. 
(1989, 1995) derived an orthogonal least squares algorithm that 
has many similarities to the standard method outlined in this 
paper. 

The method outlined in this paper may be considered as a 
form of QR decomposition, although a permutation must be 
included to account for the order in which the parameters are 
chosen. Let P be a permutation matrix that reorders the columns 
of A, so that AP has the column relating to the first chosen 
parameter as the first column, and so on. Then Eqs. (9) and 
(10) define the iterative choice of vectors that are linearly inde­
pendent and span the same subspace as the columns of A corre­
sponding to the chosen parameters. The process is essentially 

Journal of Vibration and Acoustics OCTOBER 1998, Vol. 120 / 855 

Downloaded 26 Feb 2012 to 129.128.158.24. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



one of Gram-Schmidt orthonormalisation. Normalizing these 
vectors would produce a QR decomposition of AP. 

Selection of Parameter Groups using Angles Between 
Subspaces 

The subset selection methods outlined thus far choose param­
eters one at a time. In some circumstances it may be that it is 
better to choose groups of parameters. One example is where 
a side constraint is used to ensure that groups of parameters are 
very close in value, as explained earlier. In this case it is more 
sensible to choose all the parameters that are forced to have 
similar values at the same time. Unfortunately the standard 
method of subset selection is not able to select groups of param­
eters, since it relies on choosing the columns of A that best 
represent the right hand side, b , in Eq. (1). This section extends 
subset selection by defining an angle between b and the sub-
space spanned by the columns of A corresponding to a group 
of parameters. 

Angles Between Subspaces. The concept of angles be­
tween subspaces is a generalisation of the concept of angles 
between vectors used earlier. In three dimensions, it is easy to 
visualize the angle between a pair of lines, that is subspaces of 
dimension one, or indeed the angle between a line and a plane, 
that is subspaces of dimension one and two respectively. Bjorck 
and Golub (1973) described the definition and calculation of 
the angles between subspaces. These ideas have been applied 
in structural dynamics in the areas of damage location (Cherng 
and Abelhamid, 1993), model updating using perturbed bound­
ary condition testing (Yang and Brown, 1996), mode shape 
correlation (Garvey et al., 1996a) and sensor location (Garvey 
et al., 1996b). The definition and calculation of the angles 
between subspaces will now be described. 

Suppose the subspaces are represented by two matrices F 
and G, of size nX m and n X q respectively. The corresponding 
subspaces are obtained from the columns of the matrices, that 
is the range of F and G, and if the matrices are full rank are 
of dimension m and q respectively. An orthogonal basis for 
these subspaces may be obtained using the QR algorithm. Thus, 

F = Q^R;. G = QGRG (11) 

where Q^ and QG are orthogonal matrices of dimension n X m 
and nX q respectively and Rf and RG are upper triangular. If 
q & m there will be q principal angles between the subspaces, 
ipi, which are computed from the singular value decomposition 
of Q F Q G . Thus 

cos i/f,- = (JiiQlQa) (12) 

where cr, ( ) denotes the j'th singular value. Because the matri­
ces Qp and QG are orthogonal all of the singular values are 
between zero and unity, and hence the inverse cosine is well 
defined. If any one of these angles is 90 deg, then there is one 
combination of the columns of F which is orthogonal to all of 
the columns of G and vice-versa. If any one of these angles is 
0 deg, then there is one combination of the columns of F which 
is equal to some combination of the columns of G and vice-
versa. 

Thus, finding the angles between the subspaces makes it pos­
sible for an assessment to be made of how well the subspaces 
overlap. It is obviously appropriate to examine the smallest 
angle from the point of view of acceptability of the fit of the 
parameters to the data. 

Application to Parameter Selection. If a parameter sub­
group contains only one parameter then the application of sub-
space matching reduces to the scalar product, yielding the stan­
dard method for parameter selection. Given a number of param­
eter groups with more than one parameter, then we must choose 
the parameter group that has the smallest angle between the 

3 
• 

• 

• 

4 5 6 7 
• • • • 

2 • 13 • 

• • • • 
12 10 

Fig. 1 The experimental frame. Only out of plane vibration is considered. 
The numbered points are the measurement locations. 

subspace based on the corresponding columns of A and the 
vector b . Updating may then proceed based on the selected 
parameter groups using the side constraint. One major difficulty 
with this approach is that the constraint is not included in the 
choice of parameter groups. Thus a parameter group with many 
parameters is more likely to be chosen than a group with a low 
number of parameters, purely because the dimension of the 
corresponding subspace is larger. The solution to this problem 
is to include the constraints, by using Eq. (5) , to determine 
the best parameter groups. Thus, the standard subset method, 

b 
described above, is used with 

A 
replacing A and 

\d 
replacing b . Of course the regularization parameter \ will have 
a significant influence on the choice of parameter groups, as it 
does on the regularized solution. 

Many residuals are only a linear approximation to the differ­
ences between the measurements and the model predictions. 
Strictly this approximation is only applicable to small changes 
in the parameters. For large differences between the measure­
ments and the model predictions, no small subset of parameters 
would be expected to reproduce the measurements, even without 
noise or systematic errors. It might be sensible to relocate errors 
during the updating process. Alternatively a small number of 
plausible parameter subsets could be retained and the residuals 
based on the updated parameters checked. This will be exam­
ined further in the experimental example. 

Experimental Example 

The method described in this paper will be tested on the 
frame shown in Fig. 1. The frame was made from 25.4 mm (1 
inch) square section aluminum tubing with 2.38 mm (3/32 
inch) wall thickness. The frame is 584 mm (23 inches) long 
and 279 mm (11 inches) wide. The frame contains 4 " L " 
shaped welded joints and 2 " 7 " ' joints that are difficult to 
model. Experimental data was obtained using standard hammer 
impact testing procedures on the freely suspended frame. The 
natural frequencies for the first 5 out-of-plane bending modes 
were identified, together with the corresponding mode shapes 
at the 13 locations shown in Fig. 1. Table 1 lists the measured 
natural frequencies. 

A finite element model was constructed to model the out-of-
plane bending vibration of the frame. Each short beam was split 
into 4 elements and the longer beams split into 8 elements, 
giving a total of 28 beam/bar elements. Each of the 27 nodes 
had 3 degrees of freedom, producing a finite element model 
with 81 degrees of freedom. The beam parts of the elements 
were Euler-Bernouli beams, and the torsional contribution to 
the dynamics was modeled. Table 1 lists the first 5 natural 
frequencies obtained from this model, and Table 2 gives the 
Modal Assurance Criterion (MAC) Matrix. Although there is 
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Table 1 Natural frequencies for the frame example Frame FE Model 

Mode No. 

Natural Frequency (Hz) 

Measured Initial 

1 
2 
3 
4 
5 

226.8 
275.2 
537.4 
861.5 
974.8 

269.5 
287.7 
615.0 
928.7 
1071.3 

Connecting 
Element 

'L' Joint 

some error in the natural frequencies the mode shape correlation 
is very good. 

The model of the frame will be updated using generic parame­
ters. The generic model updating approach is based on the idea 
of adjusting the mode shapes and natural frequencies of ele­
ments or substructures (Gladwell and Ahmadian, 1995). For 
example, a joint model that requires updating may be repre­
sented as a substructure. The mode shapes of the initial finite 
element model could be assumed correct, and the natural fre­
quency of the first mode, typically a bending mode, could be 
updated. Thus the bending flexibility of the joint is changed to 
produce a model that better represents the measurements. The 
element mass matrices are assumed to be correct. 

The frame model consists of beam/bar elements, each of 
which has 3 rigid body modes and 3 strain modes. The strain 
modes have the form 

Vo = 

0 
13 
0 
0 

-p 
0 

0 
0 
p 
0 
0 

~p 

2<5 
0 

-6 
-26 

0 
-<5 

(13) 

where /3 = 1 /v5, 6 = 1 /i\f]Ol) and / is the element length. The 
ordering of the degrees of freedom in Eq. (13) will change with 
the orientation of the element if a global co-ordinate system is 
used. Physically, though, Eq. (13) gives the modes in order of 
eigenvalue magnitude, where the first mode is a bending mode 
that merely involves rotation but no displacement at the nodes, 
the second is purely torsional, and the last is also a bending 
mode but involves both rotation and displacement at the nodes. 

The updated element stiffness matrix may be decomposed as 

K" = VoRARV? 

K^ 
Ki2 

K22 

sym 
\l 

(14) 

(15) 

where A is the diagonal matrix of element stiffness eigenvalues 
and R is the 3 X 3 rotation matrix given from 

Table 2 The MAC matrix for the frame example 

Experimental Mode Number 

Analytical 

Mode 

Number 

1 

2 

3 

4 

5 

• 1 

99.4 

9.2 

0.0 

2.7 

11.1 

2 

17.3 

98.3 

0.0 

1.7 

2.6 

3 

4.0 

3.5 

99.5 

1.1 

0.3 

4 

2.6 

1.0 

4.3 

99.7 

2.6 

5 

0.5 

2.8 

1.4 

2.7 

99.9 

'T' Joint 

Fig. 2 Element types for the frame example. The numbers represent the 
element group numbers. 

80-
U 
!̂  
feb60 
u 
Q 

•S 40-1 

< 20- II k I I ! I I I I I I I I I I I I I T i I I I I I I I I I I I 

1 3 5 7 9 II 13 15 17 19 21 23 25 27 29 

Parameter Groups 

Fig. 3 Angles between subspaces corresponding to parameter groups 
and the b vector 

80 

fel)60 

40 
"3) 
S, 20 k li U I 1 I I I I I I I 1 I i l l I I I I I I 1 1 1 I I I I I I i I 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 
Parameter Groups 

Fig. 4 Angles between subspaces corresponding to parameter groups 
and the b vector, including constraints 

VoR (16) 

where V is the matrix of corrected element stiffness eigenvec­
tors. The six terms KH, . . . , K33 are available for updating. If 
only the diagonal terms are changed, namely KH, K22, ^ss, then 
this amounts to changing the natural frequencies of the element 
strain modes, while keeping the mode shapes unaltered. These 
generic parameters have a meaning in terms of the interaction 
between the physical modes, which is especially important as 
the elements will be grouped according to their position in the 
joint irrespective of their orientation. 

The elements will be split into 5 types shown in Fig. 2; 
namely, connecting elements, 2 types relating to each side of 
the " Z " joint, and 2 elements of the ' T " joints. Each element 
group has an associated set of 6 parameters per element, giving 
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Table 3 The best parameter groups for the constrained case (angles in degrees) 

Parameter 1 

Angle / 

8 17.52 1.862 

14 19.127 2.205 

13 30.260 5.215 

2 

13 

7 

2 

7 

8 

2 

8 

14 

Parameter 2 

Angle 

13.36 

13.475 

13.630 

14.634 

14.752 

15.058 

10.416 

13.475 

15.225 

J 

1.097 

1.115 

1.140 

1.311 

1.331 

1.386 

0.6712 

1.115 

1.416 

7 

13 

1 

2 

26 

14 

2 

26 

14 

7 

1 

13 

2 

26 

8 

2 

7 

13 

7 

8 

1 

2 

26 

14 

2 

26 

8 

Parameter 3 

Angle 

9.036 

9.046 

9.132 

9.046 

9.862 

11.908 

9.036 

10.484 

11.757 

9.073 

9.520 

9.752 

9.073 

10.768 

11.757 

11.263 

11.757 

11.908 

8.882 

9.046 

9.221 

9.046 

9.862 

11.908 

9.752 

11.823 

11.908 

J 

0.507 

0.508 

0.517 

0.508 

0.602 

0.874 

0.507 

0.680 

0.853 

0.511 

0.562 

0.589 

0.511 

0.717 

0.853 

0.783 

0.853 

0.874 

0.490 

0.508 

0.527 

0.508 

0.602 

0.874 

0.589 

0.862 

0.874 

30 parameter groups in total. Note that there is a total of 168 
parameters. The total number of measurements is 70; 5 natural 
frequencies and 65 mode shape elements. Many models of the 
structure may be created, and this model is not necessarily 
optimum, but it will serve to demonstrate the methods outlined 
in this paper. 

Figure 3 shows the angles between b and the subspaces corre­
sponding to the 30 parameter groups, and demonstrates that the 
model of the " L " joints seem to be most in error. In all the 
examples, relative natural frequency changes are used (so that 
the frequency differences are weighted by dividing with the 
corresponding analytical natural frequency). Figure 4 shows 
the angles including the constraints, with a regularization pa­
rameter X. = lO^"". It is clear that incorporating the constraints 
has a significant effect, especially on the groups with many 
parameters. The parameter groups are numbered 1 to 30; param­
eter groups 1 to 6 correspond to joint type 1, groups 7 to 12 to 
joint type 2, and so on. For each joint type the generic parame­
ters are ordered as KH, /<22. K33, Kn, KB and K2-i. 

Sets of 3 parameter groups are now chosen. At every stage 
the best 3 parameter groups are retained; thus there are 3 sets 
of 1 parameter groups, 9 sets of 2 parameter groups and 27 set 
of 3 parameter groups. Table 3 gives the parameter selections 
for the constrained parameter group choice. The angles given 
are the angles from the subspace generated using the selected 
parameter group, and also the previously selected groups. An 
important conclusion from Table 3 is that the KU and K22 generic 
parameters are the only ones that are picked out. These parame­
ters essentially correspond to the natural frequencies of the 
torsion and low frequency bending modes of the beam elements. 

The first two parameter groups picked out (8 and 14) corre­
spond to the " L " joints at the corners of the frame, and so it 
may be concluded that these joints are the most poorly modeled. 
Also notice that the best set of 3 parameter groups is (13, 2, 
7) , which does not contain either of the first 2 parameter groups 
picked out, namely 8 and 14. This does highlight the sub-opti­
mal nature of the subset selection. 

The effect of changing the value of the regularization parame­
ter X. will now be demonstrated. Figure 5 shows how the angle 
between the subspace corresponding to the best parameter 
group, namely group 8, changes as the regularization parameter 
changes. The value of the residuals of Eq. (3) , some of which 
are shown in Table 3, would show a similar trend. 

80 
(A 

a 60 
Q 
.S 40 

^ 20 

0 

l.OE-08 l.OE-07 l.OE-06 l.OE-05 

Regularisation Parameter 

l.OE-04 

Fig. 5 The effect of changing the regularization parameter \ for parame­
ter group 8 
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Conclusions 
This paper has summarized the "best" subspace approach 

to locate errors in a finite element model of a structure. The 
standard method has been extended to account for side con­
straints on the parameter values. This requires the consideration 
of angles between subspaces representing the data and the pa­
rameter groups. The method was tested on an experimental 
frame example and identified joint bending parameters as the 
most hkely to be in error. This example required the inclusion of 
constraints to ensure that parameter values relating to nominally 
equal parameters are close. 
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