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When damage occurs in a substructure its modes of vibration will be changed but
the modes of other substructures will be unaffected. Also the higher modes will not
participate in the deflections of undamaged substructures. These observations are
used to establish the necessary and sufficient conditions that identify an undamaged
substructure. Two damage location indicators are then formulated and applied to a
numerical example. Both indicators are successful in locating the damage.
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1. INTRODUCTION

Modern approaches to condition monitoring need reliable procedures
for the location and assessment of damage by using information gath-
ered from machines and structures. This paper will concentrate on the
use of low frequency vibration measurements for damage detection,
which is an area that has received considerable attention in recent
times (Natke and Cempel [1], Doebling et al. [2]). Furthermore
the discussion will be limited to model-based approaches which rely
on the deviation of the measurements from predictions, typically
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obtained from a finite element model, to assess the location and ex-
tent of damage in a structure.

Pandey, Biswas and Samman [3] compared the curvature of the
mode-shape of a beam in its damaged condition with the mode-shape
curvature of an undamaged beam. Zimmerman and Kaouk [4] con-
sidered change in stiffness to be responsible for the deviation of the
‘damaged’ eigenvalue equation from its finite element (‘undamaged’)
counterpart. They used the angle between a damaged eigenvector
and a row of the matrix (AJM + A,C +K) to locate the damage.
The matrices M, C and K have the usual meanings and \; denotes
an eigenvalue of the damaged system. Stubbs and Kim [5] described
a method based on the observation that modal energies remained
largely unchanged at locations remote from the damage. They devel-
oped a damage location indicator and a damage severity indicator
by using the modal stiffness contributions from sub-members of the
structure. Rytter [6] classified the damage detection problem in four
levels, namely: (i) identify that damage has occurred; (ii) identify that
damage has occurred and determine the location of the damage; (iii)
identify that damage has occurred, locate the damage and estimate
its severity; (iv) identify that damage has occurred, locate the damage,
estimate its severity and determine the remaining useful life of the
structure.

In this paper we consider only the Level (ii) damage location
problem. The task of determining the nature and extent can be easily
and more efficiently done later by using X-ray, optical or ultrasonic
methods. The method described here proceeds by firstly dividing the
structure into several substructures. Then certain criteria are applied
to establish which of the substructures are damage free, and by elimi-
nation the location of the damaged substructures.

One way of establishing if a substructure is undamaged is to show
that its mode shapes have not been changed. Also, when there is no
damage to the substructure in question, but elsewhere there may be
damage, then the mode shapes of the highest eigenvalues of the sub-
structure will not be expected to participate in the measured substruc-
ture displacements. In what follows we parameterize the changes
in the substructure mode shapes (rather than parameterizing the
characteristics of the damage) and establish two indicators for da-
mage location. It is demonstrated that both indicators will tend to
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vanish when the substructure in question is undamaged. A numerical
example is used to illustrate the performance of the two indicators.
Although the method development concentrates on substructures
and substructure modes, it should be emphasized that this method
takes the global mode shapes of the structure and locates damage
by considering each substructure in turn to determine whether this
substructure is damaged. Thus the approach differs from a direct
method that uses all the mode shape data simultaneously, however all
the mode shape data is used as the technique focuses on individual
substructures sequentially. The method is demonstrated on a frame
structure but is general and may be applied to any structure.

2. THEORY

We consider a structure in vibration with global displacements u,.
The displacement of part of the structure (the substructure) may be
assembled in the vector ue R”. Predictions from an existing analyti-
cal (finite element) model, for the substructure vector, are also avail-
able and denoted by uy.

The substructure displacement vector can be related to both the
substructure mode shapes of the physical system and those predicted
by the model. Thus,

u==®p, uy=Dp, (1,2)

where @ is the matrix of normai (undamped) mode shapes of the
substructure under free end conditions, p is the vector of participation
factors, and the subscript 0 denotes values predicted by the analytical
model. The method does not require the physical measurement of
the substructure mode shapes, but we observe that they are given
by a linear combination of their finite element counterparts,

® = @R, (3)

where R is a rotation matrix. The difference between the observed
displacement vector and the finite element prediction is given, from
Egs. (1)-(3), as,

Au=u-uy; = D(Rp —py), (4)
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where the right-hand-side contains the participation factors in terms
of the analytical modes.

The vectors p and po will be different whenever there is damage in
any part of the structure and not just when the damage is confined to
the local substructure. On the other hand, R will only deviate from
the identity matrix when the local substructure is damaged. This
observation is the basis of the method set forth in this article.

R and p may be expressed as,

R=1+AR, p=p,+Ap (5,6)

where AR and Ap represent the changes in the mode shapes and
participation factors respectively. By combining Eqgs. (4)—(6) it is
found that,

Au = ®y(Ap + AR p, + AR Ap) (7

We now parameterize the change in the substructure mode shapes
so that,

ARp, = Ax (8)

where x € R defines the change AR, and M is the number of param-
eters required to parameterize AR. Equation (8) is merely a re-
arrangement of terms, where unknown elements in AR transfer to x
and elements of po transfer to A € R, This is an important step in
the method because we aim to detect a change in the mode-shapes of
a substructure independently of the particular damage characteristics.
We only need to determine whether x contains any non-zero terms
whereupon it is assured that the local substructure is damaged, and
it is unnecessary to parameterize the physical characteristics of the
damage. The latter is often required in model-based damage detec-
tion procedures and is a major drawback of those methods because
it presupposes the nature of the damage (e.g., a crack with dimen-
sions that can be parameterized ).

Equation (7) can be re-written by using the relationship (8) to give,

®o(Ap + Ax) — Au = —P; AR Ap (9)
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and can be arranged in matrix form as,

Ap
[(DgftI)oAfAu]{ x } = —®) AR Ap. (10)
-1

It is useful to emphasize the known and unknown terms in Eq.
(10). @, is known from the analytical model, A is known from the
participation factors of the analytical modes via Eq. (8) and Au is
known from the measurements and the analytical model. The un-
knowns are Ap and x (which may be used to generate AR).

One effect of damage in a substructure is to produce sharp changes
in the slopes of the substructure displacements u. This means that
the higher modes, ®,, of the local substructure will participate in
Au so that their contribution can be expressed as,

Aii = ®) Aj. (11)

But in general the higher modes are not sensitive to damage in
other substructures. Based on this observation we assert that for an
undamaged substructure,

@, My Au = 0, (12)

where the modes @y are normalized by the substructure mass ma-
trix M.

We observe from Eq. (10) that when (Ap”,x”, —1)7 spans the null-
space of [®g:®oA:Au] € RV*WHMH) then the right hand side will
be zero. Also, null [(I>05<D0A5Au] is the subspace of solutions that
contains, x=0, Ap = 0 because, on the right hand side of Eq. (10),
AR contains only the same terms that are rearranged in x so that
when x=0 then AR=0 identically. Therefore ®,ARAp=0 is a
necessary condition for an undamaged substructure.

When the right-hand-side of Eq. (10) is zero a family of solutions
for x and Ap (including x=0, Ap = 0) can be written as

Ap
Va={ X }, (13)
-1
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where the columns of Ve RNVTM+DxM+D ape the right singular
vectors corresponding to the zero singular values of [®g:®oA :Au,
and the non-zero vector ac RM*! determines an arbitrary combina-
tion of the singular vectors.

We consider a subset of the Eq. (13), namely those related to x and
the changes in the participation factors of the substructure higher

modes Ap,
Via= {Axp}. (14)

For an undamaged substructure both x and Ap (the entire right-
hand-side of Eq. (14)) should be zero, so that it is sufficient (a # 0) for
V, to be singular. Since V; is a submatrix formed from the rows of V,
and V was established on the necessary condition that ® AR Ap=0,
it is apparent that the substructure will be undamaged if and only if,

1

cond(Vy) —0 (13)

Thus the condition number of V; can be used as an indicator,

1

i =W(Vl) (16)

to locate a faulty substructure. In the analysis above it was assumed
that a full length displacement vector of the substructure was available.
In practice however it is likely that the measured displacement vec-
tors will be incomplete and the measured mode shapes would have
to be expanded or the model reduced. This is outside the scope of the
present paper and will not be considered further.

Thus far only a single measurement or mode shape vector, Au, has
been considered. One approach is to obtain the indicator #; for all
the measured modes and candidate substructures, and compare the
results. The alternative is to extend Eq. (10) as

Ap,

® 0 ... DA Aw Ap, 21)1
0 @ ... 0 oA, | Awp || i (=~PAR{ P2 (17)
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where Au; denotes the ith measured displacement, which has a
corresponding change in participation factor of Ap,. Notice that the
matrix AR (and therefore vector x), which determines the change in
substructure mode shapes, is assumed to be the same for all measured
vectors. The method, and the indicator ij, then follow naturally by
considering the null space of

® 0 ... : DA § Aw
0 q)o e ‘I)()Az . Allz

It should be noted that a further indicator,

iy = @gMoAu
27 /AuT My Au’

may be obtained from Eq. (12). The vector @, is given by any lin-
ear combination of the higher modes given in the columns of

(I)O = [$1a (52’ (RN &n] Thus,

(18)

¢0:a1$1+a2$2+"'+an$m (19)
where,
dt+oi+ - +al=1 (20)

The indicator i, appears to be less stringent than #; because it is
based only on the participation of the higher modes and not on the
invariance of the substructure modes to damage elsewhere. It should
also be emphasized that the measures are relative in the sense that
the most likely damage site will be identified. The threshold to deter-
mine whether damage has occurred or not has to be chosen on the
basis of experience. Ideally a threshold could be specified analytically,
but unfortunately this is not possible for the measures suggested.
With the correct eigenvector scaling both indicators are constrained
to be between zero and ome, but generally the indicators will be
much less than one. In the following section we investigate the per-
formance of the two indicators using a numerical example.
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3. SIMULATED EXAMPLE

The example is the cantilevered 3-bay truss shown in Figure 1, which
was the subject of a GARTEUR benchmark recently [7, 8]. Each spar
is modelled using a two Euler—Bernoulli beam-type finite elements.

The elements have the following properties: flexural rigidity,
EI=5.67 x 10° Nm?, mass density, p=2800kg/m> for all elements;
cross sectional area, 4=0.4 x 1072m?, length £=5m for the hori-
zontal spars; A=0.6x 1072m?, £=3m for the vertical spars; and
A=0.3 % 10"2m? for the diagonal spars. The in-plane vibrations of
the truss are considered, and the first eight modes of the undama-
ged structure (with natural frequencies in Hz) are shown in Figure 2.
Two cases of damage are simulated; Case 1 is a 5% reduction in the
stiffness of element 5, and Case 2 is a 5% reduction in the stiffness
of both elements 5 and 10. The first five modes will be used for
damage location.

The structure is divided into 12 substructures representing each
spar of the truss. Table I shows the allocation of elements to sub-
structures. Each substructure has 3 nodes and 9 degrees of freedom,
so that for free end conditions there will be 3 rigid body modes and
6 strain modes. The rotation matrix R is an orthogonal matrix when
both ® and ®, are normalized with respect to My, as is the case
when the damage affects only the stiffness matrix. In our particular
case R will be expressed in the form,

x4 —xg —xpu -x13 1 x5
—-X5 —X9 —X12 —X14 —X15 1 ]

(1 0 0] O 0 0 0 0 0
01 0] 0 0 0 0 0 0
0 0 1] 0 0 0 0 0 0
0 0 0 1 X1 X2 X3 X4 X5
R=1]0 0 0 ]-—x 1 X X7 X3 Xg
0 0 0 —X32 —Xs 1 X10 X11 X12
0 0 0 —X3 —X7 —X10 1 X13 X14
0 00
0 00

Using this transformation, the rigid body modes are unchanged.
These 15 parameters x; should all be zero if the substructure in
question is undamaged. The matrix is orthogonal to first order in
the parameters, but if large changes in the modes are expected then a
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FIGURE 1 The example 3 bay truss. The element numbers are indicated. Circles
represent the nodes and the triangles the fixed nodes.

2 g * 7~ -~ 3 *
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45,16 Hz 79.17 Hz
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' | ] ﬂ
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- f
483.54 Hz 508.36 Hz

FIGURE 2 The first 8 natural frequencies and modes of the undamaged truss.

TABLE I The allocation of the elements to substructures

Substructure
number

Substructure

number

Elements

[« WO I R R

11,14
15,16
17,20
18,21
19,22
23,24
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more general form of R would have to be used. Often the num-
ber of parameters may be reduced by assuming a particular form of
R, for example by assuming that the symmetric and asymmetric
modes of the substructure do not couple.

The choice of high frequency modes to use has already been
considered. The modes should be the higher frequency modes of the
substructure which do not participate in the global undamaged modes
of the structure very much. For the GARTEUR frame example modes
8 and 9 satisfy this requirement for all of the substructures, and these
modes will be considered as candidate modes for ®,.

Case 1 Figures 3 to 5 show the result of using the #; indicator. Note
that substructure 2 has been damaged. In Figure 3 each global mode
is treated independently, and mode 8 of the substructure is used for
®,. Clearly the damage is correctly located in substructure 2. Fig-
ure 4 shows the effect of using modes 8 and 9 of the substructure for
®,. The damage is located, but not as clearly as in Figure 3. It seems
that mode 8 is a better mode to use for location than mode 9. Fig-
ure 5 shows the effect of using all five global measured modes
simultaneously (using Eq. (17)), and using modes 8 and 9 of the
substructure for @,. Once again the damage is clearly located.

LSk

Indicator i .

123456789]01112
Substructure Number

FIGURE 3 The indicator i; for Case 1. The indicator is calculated for the first five
modes individually. @y = [¢s].
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Indicator i

4 56 7 8 9 10 11 12
Substructure Number

1 2 3

FIGURE 4 The indicator /; for Case 1. The indicator is calculated for the first five
modes individually. @, = [¢s¢].

E

1

Indicator i

1 2 3 4 5 6 7 8 9 10 11 12

Substructure Number

FIGURE 5 The indicator /; for Case 1. The indicator is calculated for the first five
modes simultaneously. @y = [¢sdo].

Figures 6 and 7 show the results for the i, indicator, where the
measured global modes have been treated independently and in
Figure 6 po=ds, and in Figure 7 ¢o=¢o. When mode 8 of the
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FIGURE 6 The indicator i, for Case 1. The indicator is calculated for the first five
modes individually. gy = ¢s. ‘

0.03
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0‘02 .......

2

0.015- |-

Indicator i

0 11 12

1 2 3 4 56 7 8.9
Substructure Number

FIGURE 7 The indicator #, for Case 1. The indicator is calculated for the first five
modes individually. @, = ¢s.

substructure is used the damage location is clearly identified,
whereas the result is not so clear when mode 9 is used, although the
general area of the damage has been located.
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Case 2 Figures 8 to 10 show the results for Case 2, where substruc-
tures 2 and 6 have been damaged. Both the i; and i, indicators are
able to locate the damage, although the choice of substructure
modes used has been determined based on the experience of Case 1.

ode 5

£

Indicator i :

5 6 7 8 9 10 11 12
Substructure Number

1 2 3 4

FIGURE 8 The indicator # for Case 2. The indicator is calculated for the first five
modes individually. @, = [¢sg].

o
=)
T

Indicator i L

I
'S
1

0.2 8 | ..............

2 3 4 5 6 7 8 9 10 11 12
Substructure Number

1

FIGURE 9 The indicator #; for Case 2. The indicator is calculated for the first five
modes simultancously. @y = [Pz o).
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0.03 R

0.2} e B

0.01F R ............

1 2 3 4 56 7 8 9 1011 12
Substructure Number

FIGURE 10 The indicator i, for Case 2. The indicator is calculated for the first five
modes individually. @ = ¢s.

4. CONCLUSIONS

Damage location procedures are proposed which use measured
displacements from a structure and predictions from a mathematical
model. Two damage location indicators have been derived based on
the invariance of substructure mode-shapes to - damage elsewhere, and
the participation of higher substructure mode shapes in the meas-
ured displacements only when damage is present locally. It has been
demonstrated that the procedures are capable of locating damage in
a numerical example. However the success of the indicators depends
to some extent on the choice of higher substructure modes used,
and further work is continuing on how to determine the optimum
set of modes for a given substructure.
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