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ABSTRACT

This paper is concerned with the formulation of mass and stiffness matrices. In the direct approach one uses
assumed shape functions to develop the mass and stiffness terms. Alternatively, we may construct the
matrices by using an inverse approach; the terms are assigned so that the difference between an analytical
model and a numerical (discrete) one is minimized. Here we show that more accurate models can be
obtained by the latter approach. The accuracy of rod, beam and plate elements that have been developed by
both of the approaches are discussed, and an accurate model of a rectangular plate is obtained by using the
inverse method. The superior performance of the new element compared to other established models is
demonstrated for the cases of static and dynamic response of a clamped plate. ( 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the development of element mass and stiffness matrices for vibration analysis, one starts with
an assumed displacement solution for the element based on nodal variables, and the mass and
stiffness coefficients are then determined by the minimization of either an energy functional or the
residues of the equation of motion. Different assumed solutions, or shape functions, lead to
different mass and stiffness models. However, provided that the shape functions satisfy certain
requirements, the solutions of assembled models representing the same system, but obtained by
using different shape functions, converge to the same result as the number of elements increase.
This means that the choice between different allowable shape functions mainly affects the rate of
convergence of the solution.

Considerable effort in finite element modelling is focused on obtaining an element formulation
that gives a small discretization error and fast convergence. The accuracy of the finite element
solution is usually assessed via a posteriori error estimators. Two major types of a posteriori error
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estimators have been developed: the residual type of error estimator presented by Babuska and
Rheinboldt1 and the post-processing type of error estimator proposed by Zienkiewicz and Zhu.2
The accuracy of the solution and the error estimate is improved by implementing a sequence of
refinements to the mesh. It is of interest in this paper that the error analysis may be embedded in
element formulations by an inverse approach, instead of being used as an a posteriori test. The
inverse method was used by Argyris et al.,3 Bergan et al.,4 and Simo and Rafai5 to enforce
constraints, in the form of assumed strain modes, on the stiffness formulation to guarantee that
the element model would pass the patch test. However, the requirement to pass the patch test is
only a necessary condition, and is not sufficient in itself to ensure that the formulation will be
representative of the physics.

The error in the solution of a finite element model can be expressed by a series in powers of *x,
where *x is the element characteristic length. Apparently, it was Stavrinidis6 and his co-workers
who first used this type of analysis for assessing the discretization error in rod and beam elements.
The coefficients of this series are a linear combination of the terms in the mass and stiffness
matrices. The objective in this paper is to define the terms in element mass and stiffness matrices
by minimizing the error in the finite element solution.

In general, an element model must meet certain requirements. Consider an element with
d degrees of freedom and r rigid-body modes, /

i
, i"1, . . . , r. The mass matrix M is symmetric,

positive-definite and of rank d, whilst the stiffness matrix K is symmetric and positive-semi-
definite. The rigid-body modes of the element, U

R
"[/

1
, /

2
, . . . , /

r
], form the null space of the

stiffness matrix such that

KU
R
"0 (1)

If the rigid-body modes are defined on the principal co-ordinates of the element then

UT
R
MU

R
"diag(m, m, m, I

xx
, I

yy
, I

zz
) (2)

where m is the element mass and I
xx

, I
yy

and I
zz

are the moments of inertia. Moreover, if the
element has some symmetric properties, then the mass and stiffness models reflect these proper-
ties; rotation of the element about its symmetry axes does not change the mass and stiffness
matrices. It is possible to define a set of mass and stiffness matrices for an element which satisfies
these requirements but depend upon one or more parameters. Established elements are members
of this set. By using finite element error analysis we are able to establish the accuracy of a model
that arises from specified shape functions with known parameters, and to find the optimum values
of the parameters. The idea may be demonstrated for the simplest of structural entities such as
rods and beams.

2. PARAMETRIC MODELS AND ERROR ANALYSIS FOR RODS AND BEAMS

We consider a uniform rod of length, ¸, density, o, cross-sectional area, A, and Young’s modulus,
E. Longitudinal displacement, u(x, t), of the vibrating rod can be modelled by using a set of rod
elements. Each element may be represented by a mass matrix, M, and a stiffness matrix, K, both of
which are real, symmetric and of dimension 2. The element has one rigid-body mode /

1
"[1, 1]T.

Then, by applying the symmetry considerations and constraints defined in equations (1) and (2),
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we obtain the following parametric model:

K"k C
1

!1

!1

1D k'0 (3)

M"oA*x C
1
2
!h
h

h
1
2
!hD , h(1/4 (4)

where *x is the length of the rod element and k, h are two parameters with real values. When the
rod is modelled by a string of identical rod elements that are connected in a straight line and
defined in equations (3) and (4), then the equation of the ith node in the assembled finite element
model (i.e. the ith row of the assembled matrices) gives that,

k(!u
i~1

#2u
i
!u

i`1
)#oA*x (hü

i~1
#(1!2h) ü

i
#hü

i`1
)"0, i"2, . . . , n (5)

where n"¸/*x is the number of elements. We want to set the parameters k and h so that
equation (5) represents the governing equation for free vibrations of a rod,

E
L2u
Lx2

!oü"0 (6)

By using a Taylor series expansion for u
i~1

and u
i`1

we may rewrite equation (5) as

Ak*x
L2u

i
Lx2

!oAü
iB#

=
+

m/1

2*x2m

(2m)! A
k*x

(2m#1) (2m#2)

L2(m`1)u
i

Lx2(m`1)
!oAh

L2mü
i

Lx2mB"0 (7)

When k"EA/*x the first term in equation (7) represents the governing equation for free
vibration of a uniform rod and the residual represents the finite element formulation error.
Equation (7) converges to equation (6) if and only if *xP0. We must now determine the arbitrary
parameter h. Different well-established models may be associated with particular values of h. For
example, h"1

6
produces a consistent mass matrix based on the assumed shape functions

N
1
"x/*x, N

2
"1!x/*x; h"1

8
results in a mass matrix based on shape functions

N
1
"cos (nx/2*x)2, N

2
"sin (nx/2*x)2; and a lumped-mass model is obtained when h"0. It

appears from equation (7) that the discretization error of these models is of the order *x2.
Another approach to obtain h is to minimize the difference between equations (6) and (7). This

is achieved when h" 1
12

. In this case the second-order terms of equation (7) also reproduce
equation (6) and the discretization error is now of the fourth order. The error analysis shows that
between members of the family of models defined in (5) the one specified with k"EA/*x, and
h" 1

12
represents the longitudinal vibration of the rod best. MacNeal7 obtained the same result

by minimizing the error in the eigenvalue estimates of a rod. The shape functions for h" 1
12

are
obscure but the model can be determined by averaging the consistent and lumped-mass models.

This simple example shows that by using the error analysis, we are able not only to assess the
performance of different models of an element obtained using various shape functions, but we
may also find the best possible model for the element. Shape functions related to the model with
optimum choice of parameters may or may not be known to us but this is of little concern because
the best model has been found. For stress analysis (where derivatives of the solution are required)
one may use an interpolation scheme to define a displacement field with appropriate continuity
over a group or all of the elements.
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In a similar manner, one may develop a family of acceptable models for a uniform beam
element. The result is a stiffness matrix with two parameters and a mass matrix with four
parameters,

K"k

1 1
2

!1 1
2

a !1
2

1
2
!a

1 !1
2

Sym. a

(8)

M"oA*x

m
1,1

m
1,2

1
2
!m

1,1
m

1,4
m

2,2
!m

1,4
m

2,4
m

1,1
!m

1,2
Sym. m

2,2

(9)

m
2,4

"1
6
!m

1,1
/2#m

1,2
#m

1,4
!m

2,2
(10)

The choice of

k"12
EI

(1#g)*x3
(11)

a"(4#g)/12 (12)

m
1,1

"(13
35
# 7

10
g#1

3
g2)/(1#g)2 (13)

m
1,2

"( 11
210

# 11
120

g# 1
24

g2)/(1#g)2 (14)

m
1,4

"!( 13
420

# 3
40

g# 1
24

g2)/(1#g)2 (15)

m
2,2

"( 1
105

# 1
60

g# 1
120

g2)/(1#g)2 (16)

produces the consistent Timoshenki beam element,8 where EI is the rigidity of the beam and g is
the ratio between shear and bending effects. The consistent Euler—Bernoulli beam with Hermitian
cubic-shape functions is obtained when g"0.

In order to find the best element formulation for a beam, we may assemble the parametric
model and compare it with the governing equation of the beam. In comparing the parametric
model with the governing equation of the Euler—Bernoulli beam, we find the optimum values for
stiffness parameters are k"12EI/*x3, a"1

3
, which is consistent with the classical formulation.

However, the resultant mass matrix is different from any of the established ones. It is generally
known that the accuracy in vibration analysis of a beam can be improved if one uses a mass
matrix which is different from the established lumped or consistent mass matrices. The results
obtained for the rod mass matrix might lead one to consider the weighted averaging of consistent
and lumped-mass matrices for beams, examples of which can be found in the works of Park and
Jensen9 and Kim.10 Stavrinidis et al.6 assumed that the beam element stiffness matrix was correct
and by using the discretization error showed that the optimum values for the mass matrix terms
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Figure 1. Plate element with four nodes

were:

m
1,1

"163
420

, m
1,2

" 51
840

, m
1,4

"!19
840

, m
2,2

" 15
840

(17)—(20)

The resultant mass matrix leads to an accuracy of fourth order in vibration analysis which cannot
be obtained by a linear combination of the consistent and lumped models.

The stiffness matrices for rod and beam elements obtained by using the conventional displace-
ment formulation and the inverse approach are the same and the shape functions can be uniquely
defined by a complete polynomial. The advange of using an inverse approach over the conven-
tional one can be appreciated when the displacement of an element cannot be expressed using
a complete polynomial. A clear example of this is the Kirchoff plate element. Here we use an
inverse approach to obtain an accurate model for both stiffness and mass matrices of a plate
element. There are a bewildering array of plate elements: triangular, rectangular, quadrilateral;
Kirchoff or Mindlin—Reissner; three or more degrees-of-freedom per node. We consider the
family of 12 degree-of-freedom rectangular Kirchoff plate elements and produce a parametric
model. The number of independent parameters is determined by the necessary conditions on the
model to comply with the Kirchoff plate theory. An error analysis can be carried out which shows
that the existing rectangular-plate element models (i.e. particular values of the independent
parameters) have discretization errors of order 4. We obtain the optimum parameters for
a rectangular-plate element so that it has the minimum discretization error. The performance of
the new formulation is demonstrated by comparing the predictions of the optimal model to those
from existing models and the exact solution.

3. PARAMETRIC PLATE MODEL

We consider a rectangular-plate element with four nodes (one at each corner) and three
degrees-of-freedom at each node. The displacement vector for such an element can be written as

d"[d
1
, d

2
, d

3
, d

4
]T (21)

d
i
"[w

i
, *ya

i
, *xb

i
]T, i"1, . . . , 4 (22)

where w
i
, a

i
and b

i
represent the deflection and rotations at the ith node and *x and *y are

the dimensions of the element as shown in Figure 1. The element has a 12]12 symmetric,
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Figure 2. Symmetry of the plate

positive-semi-definite stiffness matrix that can be written in the general form

K"k

K
11

K
12

K
13

K
14

K
22

K
23

K
24

K
33

K
34

Sym. K
44

(23)

where k is a positive real scalar. K
ij
, i, j"1, . . . , 4, are 3]3 submatrices with non-dimensional

entries, and K
ii
"KT

ii
.

The element has two symmetry axes as shown in Figure 2, and when the element is rotated
through n radians about one of these axes the stiffness matrix remains unchanged. The rotations
are equivalent to applying the transformations

T
xx
"

0 0 0 R

0 0 R 0

0 R 0 0

R 0 0 0

(24)

T
yy
"

0 S 0 0

S 0 0 0

0 0 0 S

0 0 S 0

(25)

where

R"diag(!1,!1, 1) (26)

S"diag(!1, 1,!1) (27)
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sFor the case of an orthotropic material the flexural rigidity along each direction, D
x

and D
y
, are also interchanged

A comparison of the transformed stiffness matrices to the original stiffness (in equation (23))
reveals that

K"k

K
11

K
12

K
13

K
14

SK
11

S SK
14

S SK
13

S

SRK
11

RS SRK
12

RS

Sym. RK
11

R

(28)

where

K
11
"KT

11
(29)

K
12
"SKT

12
S (30)

K
13
"SRKT

13
RS (31)

K
14
"RKT

14
R (32)

It is apparent that the stiffness matrix given by equation (28) is unaffected by either of the
transformations in equations (24) and (25). The constraint of physical symmetry reduces the
number of unattributed stiffness parameters to 24: the stiffness matrix is defined by a 3]3
symmetric matrix and three other 3]3 matrices, which apart from a sign change, are also
symmetric.

When the element is rotated through n/2 radians in its own plane then the ratio of side
dimensions, given by p"*y/*x, is inverted.s This rotation is equivalent to the transformation

T
zz
"

0 Q 0 0

0 0 Q 0

0 0 0 Q

Q 0 0 0

(33)

Q"

1 0 0

0 0 !1

0 1 0

(34)

from which it is found that

K
11

(1/p)"QTRK
11

(p)RQ (35)

K
13

(1/p)"QTRK
13

(p)RQ (36)

K
14

(1/p)"QTRK
12

(p)RQ (37)

It leads directly from equations (35)—(37) that if k
1,2

, k
1,4

, k
1,5

, k
1,6

, k
1,8

, k
2,2

, k
2,5

, k
2,6

, k
2,8

and
k
3,6

are known then!k
1,3

, k
1,10

,!k
1,12

,!k
1,11

,!k
1,9

, k
3,3

, k
3,12

,!k
2,12

, k
3,9

and k
2,11

,
respectively, are given by changing p to 1/p. This produces 10 more constraints so that the

MINIMIZATION OF DISCRETIZATION ERROR 377

NME 288

( 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng., 41, 371—387 (1998)



number of unattributed parameters is reduced to 14. We find that k
1,1

, k
2,3

, k
1,7

and k
2,9

remain
unchanged by the rotation defined in equations (33) and (34).

The mass matrix, M, is found by the same approach as above to have the same structure as the
stiffness matrix

M"o*x*y

M
11

M
12

M
13

M
14

SM
11

S SM
14

S SM
13

S

SRM
11

RS SRM
12

RS

Sym. RM
11

R

(38)

where

M
11
"MT

11
(39)

M
12
"SMT

12
S (40)

M
13
"SRMT

13
RS (41)

M
14
"RMT

14
R (42)

and o is the mass density per unit area of the plate. The relationship of the mass terms m
1,2

, m
1,4

,
m

1,5
, m

1,6
, m

1,8
, m

2,2
, m

2,5
, m

2,6
, m

2,8
, m

3,6
, with the terms m

1,3
, m

1,10
, m

1,12
, m

1,11
, m

1,9
, m

3,3
,

m
3,12

, m
2,12

, m
3,9

, m
2,11

is the same as in the corresponding stiffness terms.
The element has three rigid-body modes, one representation of which is

U
R
"

SAS

A

RAR

SRARS

(43)

A"

1 1
2

1
2

0 1 0

0 0 1

(44)

The rigid-body modes must occupy the null space of K, as expressed in equation (1), and thus

K
11

SAS#K
12

A#K
13

RAR#K
14

SRARS"0 (45)

This leads to nine equations of which five are independent.
The mass constraints expressed in equation (2) result in three equations to determine the entries

of the mass matrix,

m
1,1

#m
1,4

#m
1,7

#m
1,10

"1
4

(46)

m
1,1

!m
1,4

!m
1,7

#m
1,10

#4(m
2,2

!m
1,2

#m
2,5

!m
1,5

#m
2,8

!m
1,8

#m
2,11

!m
1,11

" 1
12

(47)
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tThe stiffness and mass parameters are a function of two geometrical variables p"*y/*x and the area A"*x]*y.
Other plate elements have two or more geometrical variables. For example, the geometry of a triangular-plate element can
be uniquely defined using three geometrical variables: its area and two of its angles. Using the inverse approach one
determines the relationship between these geometrical variables and the terms in the element stiffness and mass matrices
for the type of element (rectangular, triangular, quadrilateral, etc.) under study. In the case of the rectangular-plate
element, physical symmetry of the element reduces the number of unknowns and simplifies the analysis. In other elements
where the physical symmetry does not exist, more terms in the model must be identified from the error analysis

m
1,1

#m
1,4

!m
1,7

!m
1,10

#4(m
3,3

#m
1,3

#m
3,12

#m
1,12

#m
3,9

#m
1,9

#m
3,6

#m
1,6

" 1
12

(48)

Two of the equations (46)—(48) are independent.
The stiffness matrix of the plate element with nine independent parameters and the mass matrix

with 12 independent parameters can be formed by using the physical constraints described
above.t To fix these remaining stiffness and mass terms we can convert the discrete finite element
equations to differential equations and compare them to the governing equations from classical
plate theory. The parametric plate element formed on the basis of the physical constraints above
can represent either the Kirchoff plate theory or the Reissner—Mindlin theory. In what follows, we
consider the construction of a Kirchoff plate element by the inverse approach.

4. ERROR ANALYSIS FOR THE KIRCHOFF PLATE ELEMENT

We assemble the elements with area A"*x]*y to give a regular mesh for a rectangular plate
with free edges. Figure 3 shows four internal elements connected at a common node (i, j) where
three finite element equations can be written in the form

K
31

d
i~1,j~1

#(K
32
#K

41
)d

i~1,j
#K

42
d
i~1,j`1

#(K
34
#K

21
)d

i, j~1
#(K

11
#K

22
#K

33
#K

44
)d

i,j

#(K
43
#K

12
)d

i,j~1
#K

24
d
i`1,j~1

#(K
23
#K

14
)d

i`1,j

#K
13

d
i`1,j`1

#M
31

d®
i~1,j~1

#(M
32
#M

41
)d®

i~1,j

#M
42

d®
i~1,j`1

#(M
34
#M

21
)d®

i,j~1

#(M
11
#M

22
#M

33
#M

44
)d®

i,j
#(M

43
#M

12
)d®

i, j`1

#M
24

d®
i`1,j~1

#(M
23
#M

24
)d®

i`1,j
#M

13
d®
i`1,j`1

"0 (49)

The displacements and rotations at node i#1, j#1 can be written in terms of the displacement
and rotations, and their derivatives with respect to x and y, at node i, j by using the Taylor series
expansion

d
i`1,j`1

"d
i,j
#

=
+
n/1

1

n! A*x
L
Lx

#*y
L
LyB

n
d
i,j

(50)

Similar expressions can be written to refer the displacements and rotations at nodes i!1, j#1;
i!1, j; i!1, j!1; i, j#1; i, j!1; i#1, j; i#1, j!1 to the displacement and rotations, and
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Figure 3. Assembled plate structure

°The same procedure can be applied straightforwardly for other element types such as triangular, quadrilateral, etc.

their derivatives at node i, j.° The accelerations and angular accelerations can be treated in
the same way. This process has the effect of transforming the discrete finite element equation (49)
into three differential equations having terms of increasing order of smallness, O(*x2n, *y2n),
n"0, 1, 2, . . . . The terms of order zero may be compared with the governing equation from
classical plate theory. It is found that the zero-order terms introduce no information on
the stiffness and mass parameters that has not already been found from the analysis of the
physical constraints. Next, we try comparing the second-order terms with the classical plate
equation, and if the differential equation is satisfied at that order of smallness we proceed to
investigate the fourth-order terms, and so on. When an order of smallness is reached so that the
unattributed stiffness and mass parameters are exhausted and the differential equation cannot be
reconciled with the classical equation then the order of the discretization error has been
determined.

The equations that result from the second-order terms in the Taylor series are

A2k

6 C(k1,10#k
1,7

!4k
1,12

!4k
1,9

)/p2
L4w

Lx4
#6(k

1,7
#2k

1,8
!2k

1,9
)

L4w

Lx2Ly2

#p2(k
1,4

#k
1,7

#4k
1,5

#4k
1,8

)
L4w
Ly4D#oAẅ"0 (51)

2A2k
L
Lx C(k3,12#k

3,9
#k

1,12
/3#k

1,9
/3)/p2

L2w
Lx2

#(k
3,6

#k
3,9

!2k
2,9

#k
1,9

)
L2w
Ly2D"0 (52)

2A2k
L
Ly C(k2,11#k

2,8
!k

1,8
!2k

2,9
)
L2w
Lx2

#p2 (k
2,5

#k
2,8

!k
1,5

/3!k
1,8

/3)
L2w
Ly2D"0 (53)

By comparing equation (51) with the Kirchoff plate equation,

D A
L4w
Lx4

#2
L4w

Lx2Ly2
#

L4w
Ly4B#oẅ"0 (54)
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where D"Et3/12(1!l2) is the flexural rigidity of the plate, and bearing in mind that in general
L2w/Lx2O0, L2w/Ly2O0, we find that k"D/A and

k
1,10

#k
1,7

!4k
1,12

!4k
1,9

"6p2 (55)

k
1,7

#2k
1,8

!2k
1,9

"2 (56)

k
1,4

#k
1,7

#4k
1,5

#4k
1,8

"6/p2 (57)

k
3,12

#k
3,9

#k
1,12

/3#k
1,9

/3"0 (58)

k
3,6

#k
3,9

!2k
2,9

#k
1,9

"0 (59)

k
2,11

#k
2,8

!k
1,8

!2k
2,9

"0 (60)

k
2,5

#k
2,8

!k
1,5

/3!k
1,8

/3"0 (61)

These introduce four more independent constraints on the entries of K. Further restrictions can
be obtained by considering the terms at the boundaries of the plate. There are three equations
relating to a node on a free edge normal to the x-direction of which their lowest order terms after
simplification are

Dp*x
L
Lx C

L2w
Lx2

#(k
1,7

!k
1,6

#2k
1,8

!k
1,9

)
L2w
Ly2D"0 (62)

2A*y(k
28
#k

2,11
!k

1,8
!k

2,9
!k

2,6
)

L2w
LxLy

"0 (63)

Dp*x C!
L2w
Lx2

#(2k
2,6

!2k
2,9

!k
1,6

#k
1,9

)
L2w

Ly2D"0 (64)

Comparing equations (62) and (64) with the boundary conditions of the plate,

L
Lx C

L2w
Lx2

#(2!l)
L2w
Ly2D"0 (65)

C
L2w
Lx2

#l
L2w
Ly2D"0 (66)

we obtain

(k
1,7

!k
1,6

#2k
1,8

!k
1,9

)"2!l (67)

(2k
2,6

!2k
2,9

!k
1,6

#k
1,9

)"!l (68)

Equation (67) ensures that at the edge of the plate L2u/LxLy"0 and satisfies equation (63). This
brings the total number of constraints introduced by the Kirchoff plate theory to six and, hence,
reduces the number of parameters of stiffness to only three parameters. We take k

1,5
, k

2,8
and

k
2,9

as the independent parameters of the stiffness matrix.
All the stiffness models for the rectangular Kirchoff plate element reported in the literature

belong to the family of models formed via the parametric stiffness matrix. Different
models may be associated with different values of k

1,5
, k

2,8
, and k

2,9
. k

1,5
"2/p2#(1!l)/5,
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k
2,8

"1/3p2#(1!l)/15, k
2,9

"0 give the stiffness matrix of a non-conforming element
reported by Melosh,11 and Zienkiewicz and Chung,12 the MZC model. The stiffness of the
conforming element developed by Bogner et al.,13 the BFS model, is obtained when
k
1,15

"!13p2/35#78/35p2#6/25, k
2,8

"3p2/35#9/35p2#2/25, k
2,9

"!13(p2#1/p2)/
70#1/50. Assigning k

1,5
"2/p2, k

2,8
"1/3p2, k

2,9
"0, results in a stiffness matrix obtained by

Przemieniecki14 by the flexibility method. To evaluate the discretization error in these models
and to see if there is any possibility to improve the plate model we consider the fourth-order terms
in internal nodes, from which we obtain

4DA2

6! C12/p
L6w
Lx6

#30c
1
/p

L6w
Lx4Ly2

#30c
2
p

L6w
Lx2Ly4

#12p
L6w
Ly6D

#2oA2 C(m1,10
#m

1,7
!2m

1,12
!2m

1,9
)/p

L2
Lx2

#p(m
1,4

#m
1,7

#2m
1,5

#2m
1,8

)
L2
Ly2D ẅ

"0, (69)

DA2

3p

L
Lx C

1

5

L4w
Lx4

#(3k
3,9

!2k
2,9

!k
1,12

!3p2)
L4w

Lx2Ly2
!p2k

2,9

L4w

Ly4D
#4oA2 (m

3,3
#m

3,6
#m

1,9
#m

3,9
#m

1,12
#m

3,12
)/p

Lẅ

Lx
"0 (70)

DA2p

3

L
Ly C!k

2,9
/p2

L4w
Lx4

#(3k
2,8

!2k
2,9

#k
1,5

!3/p2)
L4w

Lx2Ly2
#

1

5

L4w
Ly4D

#4oA2p (m
2,2

#m
2,5

#m
2,8

#m
2,11

!m
1,5

!m
1,8

)
Lẅ

Ly
"0 (71)

where c
1
"k

1,12
#3p2#1, and c

2
"!k

1,5
#3/p2#1. Equation (69) represents the Kirchoff

plate theory if and only if we set k
15
"(13/p2#1)/5 and restrict the entries of M as

m
1,10

#m
1,7

!2m
1,12

!2m
1,9

"4/5! (72)

m
1,4

#m
1,7

#2m
1,5

#2m
1,8

"4/5! (73)

This converts the first of the fourth-order terms to

8

5!
A2 A

1

p

L2
Lx2

#p
L2
Ly2B CD A

L4w
Lx4

#2
L4w

Lx2Ly2
#

L4w
Ly4B#oẅD"0 (74)

Necessary conditions for (70) to represent the governing equation of the plate is k
2,9

"!1/5p2,
while (71) requires k

2,9
"!p2/5. Minimizing the error in these equations, we find k

2,9
"!(p2#

1/p2)/10, k
2,8

"(1#1/p2!p2)/15, and subsequently obtain

m
3,3

#m
3,6

#m
1,9

#m
3,9

#m
1,12

#m
3,12

" 1
60

(75)

m
2,2

#m
2,5

#m
2,8

#m
2,11

!m
1,5

!m
1,8

" 1
60

(76)
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Using the above, the last two fourth-order terms are simplified to

1

15
A2

L
Lx CD A

L4w

Lx4
#2

L4w
Lx2Ly2

#

1

2
(p4#1)

L4w
Ly4B#oẅD"0 (77)

1

15
A2

L
Ly CD A

1

2
(1/p4#1)

L4w

Lx4
#2

L4w
Lx2Ly2

#

L4w
Ly4B#oẅD"0 (78)

These terms deviate from the Kirchoff plate theory when pO1. We specified the optimum
stiffness parameters, and using equations (72), (73), (75) and (76) introduced more constraints on
the mass matrix terms. Both MZC and BFS mass matrices satisfy equations (72), (73), (75) and
(76); however, their stiffness matrices, along with Przemieniecki’s stiffness matrix are less than
optimal. The established rectangular models for the Kirchoff plate have discretization errors of
order 4.

When k
1,5

"(13/p2#1)/5, k
2,9

"!(p2#1/p2)/10, and k
2,8

"(1#1/p2!p2)/15 the result is
a more accurate stiffness matrix, with the submatrices K

11
, K

12
, K

13
and K

14
given by

K
11
"

2(7#13(p2#1/p2)/5 (13/p2#1)/5#l !(13p2#1)/5!l

2(2#p2#14/p2)/15 (p2#1/p2)/10!l

Sym. 2(2#1/p2#14p2)/15

(79)

K
12
"

2(2p2!7!13/p2)/5 (13/p2#1)/5 (1!2p2)/5#l

!(13/p2#1)/5 (p2#14/p2!1)/15 !(p2#1/p2)/10

(1!2p2)/5#l (p2#1/p2)/10 2(p2!1/p2!2)/15

(80)

K
13
"

2(7!2(p2#1/p2))/5 (2/p2!1)/5 !(2p2!1)/5

!(2/p2!1)/5 (1#1/p2!p2)/15 !(p2#1/p2)/10

(2p2!1)/5 !(p2#1/p2)/10 (1#p2!1/p2)/15

(81)

K
14
"

2(2/p2!7!13p2)/5 (2/p2!1)/5!l !(13p2#1)/5

(2/p2!1)/5!l 2(1/p2!p2!2)/15 (p2#1/p2)/10

(13p2#1)/5 !(p2#1/p2)/10 (1/p2#14p2!1)/15

(82)

When p"1 the stiffness matrix introduced in equations (79)—(82) has a fourth-order accuracy
and, hence, the discretization error is of order 6 at the internal nodes. The mass matrix can be
determined by minimizing the error either in the internal nodes or in the nodes located on a free
edge. In both cases the requirements for M that were determined earlier must be retained.
Considering the error at the edge of the plate, it is found that the second and fourth-order terms
are automatically satisfied by the previously established relationships for the mass terms, but
a fixed third-order error remains. We may satisfy the fifth-order terms and in that case the result
will be a mass matrix which is very similar to the MZC element. Instead, we minimise the error in
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Table I. Dimensionless centre displacement, wD/q¸4 for uniform load q

MZC model Inverse model

Mesh p"1 p"2 p"1 p"2

4]4 0·001403 0·002778 0·001274 0·002561
8]8 0·001304 0·002593 0·001266 0·002540

12]12 0·001283 0·002560 0·001265 0·002536
16]16 0·001275 0·002548 0·001265 0·002535

Exact19 0·001265 0·002533 0·001265 0·002533

the internal nodes so that the submatrices M
11

, M
12

, M
13

and M
14

take the values of

M
11
"

1

2721600

408402 54432 !54432

14058 !9372

Sym. 14058

(83)

M
12
"

1

2721600

119718 !25353 !28188

25353 !6147 !6248

!28188 6248 6462

(84)

M
13
"

1

2721600

32562 !5427 5427

5427 207 3024

!5427 3024 207

(85)

M
14
"

1

2721600

119718 28188 25353

28188 6462 6248

!25353 !6248 !6147

(86)

The proposed mass matrix provides the highest possible accuracy at the internal nodes whilst
producing the same order of error as the MZC element on a free edge. In what follows, we
consider the improvement that the new model provides in predicting the plate behaviour.

5. NUMERICAL EXAMPLE

A test problem was used to determine the efficiency of the new plate element. Static and dynamic
behaviour of a fully clamped square plate was predicted using the new formulation and compared
with that obtained from established shape-function formulations and the analytical solution.
Other researchers have used the same problem as a test case for plate elements.15~18 From the
existing models, we only list the results of MZC formulation; the stiffness parameters k

1,5
, k

2,8
,

and k
2,9

in the MZC formulation are the closest to the optimum values and, hence, produce
smaller errors when compared to other models reported in the literature.15
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Figure 4. Errors in the estimated centre displacement of a clamped plate

Table II. Dimensionless natural frequency of a square fully clamped plate u¸2J(o/D)

MZC model Inverse model
Rayleigh—
Ritz20 4]4 8]8 12]12 16]16 4]4 8]8 12]12 16]16

35·98 34·31 35·45 35·74 35·84 35·87 35·97 35·98 35·98
73·39 70·03 72·04 72·74 73·01 73·18 73·36 73·39 73·39
73·39 70·03 72·04 72·74 73·01 73·18 73·36 73·39 73·39

108·22 98·06 103·71 106·00 106·92 108·02 108·06 108·18 108·20
131·58 127·58 129·41 130·44 130·90 129·39 131·52 131·57 131·58
132·20 129·62 130·28 131·16 131·58 130·47 132·13 132·19 132·20
165·00 151·01 156·95 160·83 162·52 164·55 164·71 164·92 164·97
165·00 151·01 156·95 160·83 162·52 164·55 164·71 164·92 164·97

Table I shows the computed central deflection of a square fully clamped plate with area ¸2 and
a rectangular fully clamped plate with the area ¸]H, H/¸"2, both under uniformly distributed
loads. Comparing the values obtained using the MZC and the new formulations, we notice
a significant improvement in predicting the static behaviour of the plate using the new formula-
tion. The errors in predicting the central deflection from both methods are shown in Figure 4.
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Figure 5. Errors in the estimated eigenvalues of a clamped square plate

Next we evaluate the eigenvalues of a square fully clamped plate obtained from the new model
and from MZC model. The results for various meshes are reported in Table II. Also listed in this
table are the eigenvalue solutions of the plate obtained by using the Rayleigh—Ritz method20 as
the reference. Comparing the eigenvalue predictions we find that the results of the new formula-
tion converge much faster than those obtained from the MZC model. Accuracy of the new model
is of order 4 while in the MZC model the accuracy is of order 2. Therefore, the rate of convergence
in the new model on log—log scale is about twice the rate in the MZC model. This can be easily
seen from Figure 5 which presents the percentage of error in eigenvalue estimates vs. number of
elements along one side of the plate. Results from both examples shows the accuracy of the new
plate model and its superiority over the established models in the literature.

6. CONCLUSIONS

A rather different approach from those usually employed in the finite element method is used to
obtain the mass and stiffness matrices for a plate element. In the inverse approach, we consider
what criteria must be satisfied by the element model and form a parametric family of admissible
mass and stiffness matrices. The parameters of the element model are then obtained by minimis-
ing the discretization error in the element formulation. The benefit of using this approach is that it
gives the best possible model for the element under consideration, whereas in the direct method
the result is sensitive to the choice of shape functions and the optimum model is not achieved.
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An accurate plate element model is obtained by minimising the discretization error in
formulation of mass and stiffness matrices. The improvements of static and dynamic responses
are presented using a fully clamped rectangular plate example. The added accuracy in the new
model requires no extra computational effort and it may be implemented easily into existing finite
element codes.
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