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J. E. Mouers.he.ad The selection of parameters is most important to successful updating of finite element
Department of Engineering, models. When the parameters are chosen on the basis of engineering understanding the

Mechanical Engineering Division, model predictions are brought into agreement with experimental observations, and the
The University of Liverpool, behavior of the structure, even when differently configured, can be determined with con-
 Liverpool L69 3GH, UK fidence. Physical phenomena may be misrepresented in the original model, or may be
e-mail:;j.e.mottershead@liv.ac.uk absent altogether. In any case the updated model should represent an improved physical
. understanding of the structure and not simply consist of unrepresentative numbers which

M. I. Friswell happen to cause the results of the model to agree with particular test data. The present

Department of Mechanical Engineering, paper introduces a systematic approach for the selection and physical realization of

University of Wales Swansea, updated terms. In the realization process, the discrete equilibrium equation formed by
Swansea SA2 8PP, UK mass, and stiffness matrices is converted to a continuous form at each node. By compar-

e-mail:m.i.friswell @swan.ac.uk ing the resulting differential equation with governing equations known to represent physi-

cal phenomena, the updated terms and their physical effects can be recognized. The
approach is demonstrated by an experimental exan{@@Il: 10.1115/1.1505028

1 Introduction the definiteness properties remain unchanged when the parameters
. . . . are varied over a wide rangéor example all positive values of
Finite element model updatirid, 2] is employed to bring the Young's modulug The definiteness of the model can be preserved

\F/);?icci)lrfgc;?c?n? fatheh rr;ic::oﬁl S'Prhocﬁjgr;eeTn;fsnE;ﬂ%:éﬂiﬁgﬁgtalrg\% Jy introducing the rigid body modes of the structure into the up-
phy ' P ting process. This idea was applied at the element level by

that the measured data represent the actual behavior of the st Suming the initial model had the correct connectivity pattern

ture and are not contaminated to an unacceptable level with ra?r?—d led to the concept ogeneric element§4,5]. A generic-

dom or systematic errors. In the presence of good quality test d . . -
updating procedures should be focused on the sources of discriagment model is a parametric form of the element matrices that

ancies between the test and the finite element model. They sh ?SVF')?;S r;(;rn)? ;%Tgxcce)fs altlhgllg;v;brllz r;?gtilgsyoéggﬁgteﬁwae;;' be

locate the areas that are mismodelled and provide a more accura : N .

model for them. The accuracy of the updatepd model depends uplbsrgd W'tfh ;omplg.t]f gonﬂdenpe. In m%r.'ly casc?lsball pq_);]smal C?Xplg'
. . o ion of the modified terms is not readily available. The update

the parameters chosen for updating. The predictions should % . h .

sensitive to the chosen parameters, but the parameters themsei %gel should be able to predict the behavior of the structure in

must be able to define the phenomena that was either mlsmOdep%]ysical explanation of the updated terms ensures that the modi-

or not present in the initial model. ) - h

. . .. fications are not just numerical values that match the test results
_There are basically wo parameter selection strategies in %t are justified by engineering understanding of the system and
literature. A discussion that includes the performance of the dYe test carried out on it
ferent appro_aches can _be _found[B]. One app_rc_;ach Is to select In this article we begih by defining what we mean by generic
the geometric or materlal_lnput data of the flane element mod 'ements. In the original workd.5] parameters were defined in
and by mo_dnfymg them Improve the correlatlor} _bet_ween th e modal domain using eigenvalues and eigenvectors of the ini-
model predictions and the experiment. The modification can

performed on individual or selected groups of elements. T '§| model at the element level. But, a physical explanation of

; ; : dated terms in the modal domain of an element is not always
method is very popular due to the fact that it can be implement @ailable. Here a systematic approach is introduced to explain the

in existing finite element codes and more importantly, becau Fvsical meaning of chanaes occurring in undated aeneric ele-
there is a readily available physical explanation for each modified 9 nges 9 pdated g
ents when they are defined in the spatial domain. The approach

term. However the method is incapable of changing the math- . s
ematical “structure” of the model, so that structural mismodelling® to reduce the number of parameters to be identified by the

and omitted effects cannot be corrected. Errors of this type inclu plication of constraints including matrix symmetry, invariance

the omission of shear effects, stress stiffening and coupling §f t:}gaﬁfr:ngp tthrgarti”fde_sbotg r%féﬂ”}iﬁ;ﬁﬂfﬁgﬁmg t:fe of
bending and torsion in beams. pp g y P

The second sirteqy in  convast o th fst,alows changes{fT°T s Taces A heprnciel mess nd herie v
all entries of the system matricédsr a subset of thejn The : !

method allows the updated model to reproduce observed beha: %rr;ailnf?rr]‘;eze"’f‘itnmgnnggeznséhric::ug:eﬁé?l‘ts's introduced for the first
exactly, but there is no guarantee that it represents a physi ge n genel Lo A .

system and not a meaningless numerical expression that reprd> nite element model defines the dynamic equilibrium condi-
duces the test data. A common problem is the loss of positivity pn of the phy_S|caI structure in a__dl_screte f°r.”?- The gpda_ted
system matrices. The updated matrices may be indefinite and del also defines the same equilibrium conditions taking into

(semijpositive definite as required, whereas in the first approat'?\(fcou.nt mismodelled and neglected_ effects. The dlsc_rete updated
équations can be converted to continuous form. In this paper the
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erning equations from an updated model, one may realize the Ui_g
physical significance of added terms in the updating procedure. A 1[_kj K+kitt —ki*1{ u,
. X o i
case study is performed to demonstrate the physical realization of L
an updated model. Ui+1
Ui—l
U r=0.
2 The Generic-Element Model Ui g

The updating of a finite element model is performed with a (3)
limited amount of experimental data from the structure. Inevitably
an analyst must make some assumptions about the nature of nige displacements at nodies 1, andi +1 can be defined in terms
modelled or neglected effects in order to improve the chance @fu; and its derivatives using the Taylor series expansion,
tracing them successfully in updating. The basic assumption in "
every updating procedure is that the order and the structure of the (=1)" "y,
finite element model is correct. In other words, the structure of theli-1= Ui+ 21 n!
initial model is capable of accommodating all the physical effects " 4)
that are somehow represented in the measured data. We begin
with this assumption and define generic parameters for each el substituting these values into E(B), we obtain a series of
ment of the initial finite element model. This approach is specigbntinuous differential equations,
because it permits neglected effects to be included so that the
physical meaning of the model is improved when updated. Modi- *
fication of a finite element model at the element level implies *2
confidence in the connectivity of initial model. When this is in n=1
doubt a generic model of the group of elements that include the % i1 Ml o
d - m T+ (=1)"m! 9",

oubtful connectivity may be constructed. Referef@kuses a +B 7
generic model for a branched joint represented by three beam n=1 n! ox"
elements in an initial model.

A generic element model is built by imposing all necessarjhe expression obtained for the equ_ation_of motion contains dif-
conditions that the element must satisfy: the element mass mafent orders of.. The element length is an independent parameter
M is positive definite, and its stiffness mati is semi-positive therefore the right hand side of the equation of motion is zero only
definite. The rigid body modes of elemeh span the null space if each order is equal to zero independently. The first order terms,
of the stiffness matrix and are related to the mass matrix as,

+L

1 9"y
u; =Uu:+ J—
i+1 i “= nl ox"

n

ax”L’ "

K (- oy L2

L"*2=0. (5)

m 0

o J

] ) ) T define the sum of internal forces at nadand must be zero even
where in generain is a diagonal %X 3 matrix with the total mass \yhen the adjacent element have different properties. It seems,
of the element as its nonzero entries ahds the 33 inertia however, that this cannot be achieved without setting/dx
products matrix. A generic element model is developed by impos-o. The difficulty can be removed by assuming a linear relation-
ing the above necessary conditions on the element matrices. Thgy between the element parameters and the physical properties
meaning of generic-element parameters is now explained Bythe rod at the element nodes,
means of bar and beam examples.

L1=>—(ki+1—kj)% (6)

K®g=0, ®LMDg= [

i+l : . j= ' )
2.1 Bar Element. The generic element for a uniform bar k Caki+Cakivy,  K=Coki—g+Coki,

can be expressed in the form,

m*l=comi+cymi,y, mi=comi_;+c,m (1)
1
K— kf 1 -1 M=mL B B k>0, 5 wherek; andm; are axial stiffness and mass per unit length of the
“Ll=1 1/ =m B ;_B ' ﬂ<% @) rod at nodei. We substitute Eq(7) into (5 and expand; 4
2

=k;=Lok;/ax, m.,=m;xLam;/dx. The result sorted in orders
wherek is the axial stiffnessm is mass per unit length, aridis ~ of L is,
the length of the element. The form of the matrices is determined

only by Egs.(1), un!f_ormlty _and symmetry. The conditiof< 7 Ll:((cl+cz)—(cl+cz))ki—'=O,
arises from the positive definiteness requirement on the mass ma- X
trix. It can be seen tha® produces different possible mass matri-
ces for the bar elemen=0 produces a lumped mass matrix. 2 4 I L
B= = corresponds to a consistent mass matrix with linear shape LP= = (et ea) 5| ki) (Gt camiti=0, ®)
functions,ﬁ=% creates a consistent mass matrix with harmonic
shape functions and= 75 produces a mass matrix with minimum s 1 g (dkioui) 1 o
o . L°= =(c1—Cy) —=| — —|— s (c3—cy) —Uu;=0.
discritization error for a uniform bar. 2 X\ IxX ox 2 IX

The parameters of each element may vary independently during
updating. We may, however, introduce more constraints on tA@e first of Eqs(8) is satisfied automatically. If we consider the
parameters by insisting that inter-element forces are in equiligniform bar for whichc;=1/2,1=1, ... ,4,then we see that the
rium. We develop the equation of motion using generic modegg&cond and third-order terms go to zero and the fourth order terms
and then apply the requirement of equilibrium on the inte@ppéear as,
element forces. The following example demonstrates the 4 3 S 3
procedure. Loy L o Lk otui 107k otup 1Tk o

Consider part of a structure modelled using bar elements. We 127 9x* 6 ax ax5 4 9x® 9x® 6 9x° Ix
select a row of the free vibration equation which consists of nodes
i—1,i,i+1 corresponding to bar elemerntandj+ 1 with equal
length ofL and different physical properties,

. 20 . am; i, . %m; 0 o
M— + — —+ —5 U .
P " ox X ox  oxc ! ©)
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Inspection of Eq(9) showed that fourth order terms in the equawhere the matrixR is a transformation matrix which relates the
tion of motion of a bar element cannot be set to zero urkese;,  element coordinates before and after rotation. In the case of a
are constant ang= 7. In that case the fourth order terms lead t¢ymmetric beam element with nodes 1 and 2, the rotation matrix

the expression, is developed from the identity,
9 P 0 o0 1
_2( —ki—— +miii; | =0, (10) W1 W2
X X L6, —L6, 0 0 -
=R , R= (15)
from which we recognize the differential equation governing axial W2 Wi 1 0
deflection in a uniform rod. Lo, —L6, 0 -1 0
The equilibrium constraint on internal forces at each node de-
fines relationships for the generic parameters that may be useqyfich implies,
updating. In the case of the beam element the number of param-
eters is reduced when these constraints are applied. Kow  Koud2  —Ku Ky/2
2.2 Beam Element. A generic beam element W_i_th nodes 1 Kjog  —kaw2 Kuyw/2—Kypg
andi + 1, and degrees of freedgmw; ,L 6, ,w;,1,L 6, 1] has the K= K ,
following general form for the stiffness matrix, Kuw ~Kww/2
Sym Koo
kWW kw(f - kWW kWW_ kw(f K. >k W/4> 0 (16)
K = ka k()() _kw(9 kwa_ k99 o ,
- kWW - kw& kWW - kww+ kwe ’ mq, mq, % —my; Myy
kww_ kwﬁ kwﬁ_ kﬁﬁ - kww+ kw«9 I(ww"' k00_ 2kw0 M= pAL My, —my, Moy
k>0, Kog>0,  Kunkoy=Kep (12) My =My,
The above generic stiffness model can accommodate any effect Sym M22
that is defined using the specified degrees of freedom. Restricting 1 my
the model to Euler-Bernoulli beam theory and applying equilib- mz4=g— 7+m12+ Myg— My, (17)

rium constraints on the internal moments and shear forces one can
reduce the number of generic parameters by reld¢jpg k., and
kyy Of each element to the nodal bending stiffngssind its first L - :
derivative dk; /9x. The result of satisfying the requirement that ¢’ and the mass matrix is formed using four independent param

; . > . Sters,myy, Myp, My, My,. The generic model constructed for a
internal forces are in equilibrium, to the fourth order, is the govSymmetric beam element is capable of representing all possible
erning equation of,

effects in a symmetric element: the choice lqf,=12EI, ky,

where the stiffness matrix has two independent paramé&igys

(92 (92 =4E| and mll: 13/35, m12: 11/210, m14: 13/420, m22: 1/105

w; 1 : . X
_2(ki_2> +m;, =0 (12) creates a uniform Euler-Bernoulli beam model with a consistent
28 28 mass matrix obtained from cubic shape functions. A more accurate

L . ) model for dynamic analysis of the Euler-Bernoulli beam is formed
and minimizing the error up to the sixth order terms restricts g o set my,= 163/420, m,,=51/840, my,= —19/840, My,

element with nodesandi + 1 to have parameters of the following — 15/840. It may be shown that the latter mass matrix results in

form, discretization errors of the6order while the consistent mass
matrix has 4 order errord7]. A Timoshenko beam element in-

3 ki _ § i1 cluding shear effects is obtained by selecting,

kWW:6ki+6ki+l+ = L

50x 5 ox
k El 12 kgo=EI A
21 9 2 8'(' 1 Hki+l ww— 1T 00— a0~
=—k + —k; iy [ g 1+g9
ku=g kit gkivat g L-5——L, (13)
16 4 1 ok 2 ok (13+ ! +1 2)/(1+ )?
i i+1 Mu=|3z+t 7591739 9
=_k+ =k L= 35 107 3
Ko=g kit gkt gt s b
; . 11 11 1
It is clear from the above that we may relate the 3 generic Mp=| =+ ——g+ —g? (1+g)?
element stiffness parameters to 2 parameters at the nodes, namely 1271210 120° 24

k; and dk; /9x, and hence reduce the number of parameters. For

example if a beam is modeled witd elements, the number of 13 3 1

parameters can be reduced fromt® to 2xX N+ 2. The obtained M= —| 5ot =9+ 5, 9° (1+9)?
S A - 420 407 24

generic stiffness matrix gives the most accurate form to define an

Euler-Bernoulli beam with variable cross section.

1 1
2.3 Geometric Symmetry. Further restrictions can be im- mzz:(ﬁ+ 609" ﬁ)gz)/ (1+9)?
posed on an element if it has symmetry axes. In that case the
invariance of the matrix entries to rotation of the element about
one or more of the axes of symmetry is used to further reduce the 9= CEl
number of unknown parameters. The constraint can be expressed GAL?
in the form,

(18)

where C is the cross section shape factor. Also a beam element
K=R'KR, M=R'MR (14) with a crack at half its length may be formed by assigning,
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12E| 0;. —0—(}5-0—0—0-90‘0\6 i <’!>,0—BG-O—O—®S 2]
Kyw= ) \ ;
1+(1-v9)a’F, oab ) ; ]
) EI[4+(1—1?)(18aF;+2a°F,)] 1 o ® ? |
WTIT6(1- DaF i 2(l-PaF,] D) ‘. ,’
0.3} 1 i i
wherea=h/L is the ratio between the thickness and the length ¢ \ |
the element and the functions, 2 04k ' ! .
TS S 2 ;_o,s— || ,l 4
an 2 ta > 0.199 1—sin > +0.923 g Lo
F.= d 06 b ¢ 1
0 Sz 7S ‘\ II
CO 7 07k ,‘ ', ]
(20) o8} Vi .
and, ool \"l )
alh g2 4
Fa= f T—<(3-25)%(1.122-0.5615+0.08%"+0.1&°)°ds o o7 0z 05 o4 05 08 o7 o8 o5 1
0 1-s Beam Length (x/L)
(21)

. . . o Fig. 1 Changes in lateral stiffness
are products of stress intensity factors for opening type and sliding

type cracks respective[\8], anda is the crack depth. We consider
the case where the element thickness is small compared to
length and take into account only the first order termsa.iffhen
the formulation of a cracked beam is simplified to,

& their predictions by the experimentally measured first natural
frequency of the beam with different crack sizes. Shen and Pierre
presented a solution to obtain the mode shapes and natural fre-
Kow=12El, kyp=El(4—6(1—1%)aF,). (22) quencies of the cracked beam based on the Christides and Bar
. . . L ) theory. They verified their method using the experimentally mea-
This means that in the resulting finite element formulation of thg,req natural frequencies and predictions of finite element models
cracked beam the crack is modelled as a lumped bending spriiGhe cracked beam developed using rectangular and triangular
with a negative constant. , plate elements. We use the first experimentally measured natural
We have shown that by a generic element approach a small §ghyency and corresponding mode shape to update the initial fi-
of parameters may be found for updating by satisfying a variety ffte element model which is formed using uniform Euler-
constraints including null-space requirements, equilibrium of irgernoulli beam elements with no crack effect introduced. The
ternal forces and moments, and element symmetry. In the casg.Qfe where the first mode is reduced to 0.76% of its initial value
_plate, shell, solid or other elements satisfying the equnlbrlum_ Qiter introducing the crack is used in updating. The aim is to
internal forces at nodes the number of parameters may again pgjate the model and find a physical justification, i.e. location and
reduced significantlf9]. The next section deals with the chal-he size of the crack, for the updated terms.
lenge of determining the physical meaning of an updated modelparameterizing a crack by using a lumped rotational spring is
using the parameterization described above. established in the literature. It was shown earlier that one formu-
. o lation of a cracked beam element effectively models a crack as a
3 Physical Realization of Parameters lumped rotational spring with a negative stiffness &f,
Processing updated models is the most important step in under—6EI(1— v?)aF,. However such a lumped model produces
standing the dynamical behavior of a structure. By realization atcurate results only for one mode and cannot predict the behavior
the modified terms one finds those characteristics of the test stro€the structure over a wide frequency range. Moreover the zone
ture that were not included in the initial model. However the taskffected by a crack in a lumped model has zero length while in
of realization of the physical meaning of each modified term is nogality the stiffness of the beam is affected over a finite region
straightforward and is mainly based on the engineering judgmeatal to the crack. Our purpose is to develop an updated model not
of the analyst. For example, we would like to find out if a changkémited by the restrictions of the negative lumped spring, and
is due to the shear effect, stress stiffening, or a local crack, etctherefore we start with the generic form of the beam element
is shown in the previous section that all these effects can be atiffness developed in Eq11). There are 3 parameters in each
counted for by changes in a similar set of parameters. It is deelement to be updated, namedy,, , k,,, andk,,. We may up-
onstrated how physical phenomena attributed to the discrepandese the beam model using these three parameters in each ele-
between experimental data and the prediction of an initial modelent. However by using only the first mode of a thin beam in
can be extracted from modified terms in an updated model.  updating we may neglect the shear effects and assume that the
In modelling a continuous structure using the finite elemeuler-Bernoulli model defines the characteristics of the structure
method a discrete model of a bar, beam, shell, or solid is assigregtequately. This reduces the number of parameters to two per
to each element. When the generic model of each element exhibitsle by insisting on the equilibrium of inter-element forces of a
its true nature then the updated model represents a discrete verieam described in the previous section, i.e., we seteand
of the equation of motion of the physical structure. At each el@k;/Jx as updating parameters. An equation error function is
ment the discrete equation can be converted to a continuous fdiermed using the first mode. The equations are weighted based on
as demonstrated in Eq&)—(5) and compared with existing con- the strain energy of the related areas to avoid large changes in
tinuous models to find the effect it represents. The method psrameters that do not contribute to the strain energy of the first
demonstrated using the following updating exercise. mode. The updating was performed with different numbers of
The experimentally measured modes of a simply supported uslements to ensure the stability of the results. The updating re-
form steel beam with the length 575 mm and of rectangular crosslts, i.e., the percentage change in paraméteasid ok; /9x are
section 31.75 mm depth and 9.525 mm breadth with a symmetslown in Figs. 1 and 2. As expected, a sharp reduction in stiffness
crack at mid-span are reported by Christides and [B&f and at the center of the beam is predicted.
Shen and Pierrd11]. Christides and Bar presented a one- We might attempt to further reduce the number of updating
dimensional theory of the cracked Euler-Bernoulli beam and veparameters, and for the purpose of illustration the updating was
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Fig. 2 First derivative of the lateral stiffness Fig. 4 Constant element properties

carried out again using two different sets of parameters. In the fifS¢ first order inL. The two cases considered demonstrate the
it is assumedk; varies linearly along the element, i.@k; . ,/dx need for both of the parametetsand ok; /9x when updating the

=k, i ivati . _cracked beam.
enﬁgh/t&;aﬁgri;g;eégneE\éact;gfeiﬁe%{'u%;ﬁgzneéﬁf +'I'lh§;efore the el We have obtained reliable results from updatipgnd ok; / 9x
1 ’

and the remaining task is to find the associated physical meaning
Kyw=6k;+6k; 1, of the updated terms. To find the physical meaning we form the
governing equation of the beam at each node using the updated

A 9 ki 1 ki _ model. The governing equation for a generic beam model with
ko= 5 kit 5 kit P R L=aki+ 2k, (23) variablesk; , dk; /9x is represented in Eq12). The obtained gov-
erning equation suggests a beam with variable bending flexibility.
K :EK_JF f(k_Jr ’7_ki|_ +1a—kiL=3k-+k- Christides and Barf10] developed a one-dimensional theory
005 5\ gx T 5 ox P of the cracked Euler-Bernoulli beam by defining the governing
The results of updating assuming a linear variation of beam pro%guatlon,
erties are shown in Fig. 3. In the second ckses assumed con- 92 9w
stant within the element i.é,,,= 12k; , k= 6k;, kyy=4k;, and 52 | EIQ(X) =7 |+ pAW=0 (24)

the results are shown in Fig. 4. The results of modifyladgrom
both latter methods are similar to each other but are different fromhereQ(x) is the crack disturbance function defined as,
the results when botky anddk; / 9x are updated. The observations 3 x|\ 1-1

C
h—a h )

were verified using different numbers of elements. This can be  Q(x)= -1

simply explained by the fact that the selection & /dx as a

constant or zero along the element results in a zero order_estirm\]-ere as befora is the beam thicknesa, s size of the crack and

tion of the parameters. In these cases the sum of the interpals |ocation of the crack. Christides and Barr used the congtant

forces at each node is not zero and the estimate contains errorg,o. pecify the area affected by the crack and evaluated it from

experimental observation. Later Shen and Pigtfg showed that

for symmetric cracksy is independent of the location or size of a

symmetric crack and is equal to 1.936.

coo " ] Realization of updated parameters is performed by comparing
o] the governing equation of the updated model at each node with

b the proposed governing equation of Christides and Barr. The

1 change irk; at each node is equal to the value of Q(x) evalu-

ated at that node. We evaluated the crack size by comp&ing

=1+ Ak/ky at each node witlQ(x) and founda/h~§ which is

1 consistent with the test repdri0O]. Figure 5 shows the identified

Q; at each node and the values@fx) for a/lh= % Constructing

1 the governing equation of the beam from the updated model en-

abled us to find a physical explanation for the change in each

\. parameter.

1+ (25)

EXP(—2y

T T T

W T T T
-0
4 900669006 & 9-0-0-6 ©-0"

/
-0.1¢r @

““““‘"‘f“‘*‘?

Changes in k. %

4 Conclusions

Generic element models for updating are developed by con-
straining the model to have the appropriate null space, positivity
4 . . . . . ; : : . properties, total mass and moments of inertia and geometric sym-

0o e ey %% %' metry (if appropriate. The parameters are also constrained to
meet the requirements of internal-force equilibrium at each node.
Fig. 3 Linearly varying element properties The generic-element models obtained by this approach can be
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