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In structural dynamics superconvergent element models are obtained by eigen-value convergence

analysis, or minimizing the discretization errors leading to maximum convergence rates in their eigen-

solutions. The element formulations developed by these inverse strategies are obtained in local

coordinates. As no shape functions are employed in their development transforming them to global

coordinates is a challenge and prevents their use in practical finite element models. To remove this

obstacle a new method is proposed to obtain shape functions for superconvergent element models

attained directly from the eigen-value convergence analysis or discretization error analysis. The

method employs series of trigonometric functions to obtain shape functions corresponding to the

superconvergent element formulations. Using the proposed strategy, the shape functions for super-

convergent rod, beam and transverse vibration membrane are obtained. It is shown transformation of

the superconvergent element formulation to the global coordinates using the obtained shape functions

does not affect the eigen-value convergence rates.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The accuracy of finite element (FE) models may be improved
by number of methods. The first and most common method is
H-version, in which the order of element is kept fixed while the
number of elements is increased in a way that maximum size, h,
of the elements approaches a small value [1]. The second method
known as p-version, whereby the mesh of the model is fixed
and the order of the interpolation functions, p, is progressively
increased until meeting the desired degree of convergence [2].
Houmat [3,4] derived improved formulations for rod and trans-
verse membrane elements using the later approach.

A rather different strategy in obtaining accurate FE models is to
employ inverse methods. Considerable efforts in FE modeling have
been devoted on obtaining an element formulation that gives a small
discretization error and fast convergence. Employing inverse methods
was firstly introduced by Argyris et al. [5], Bergan and Nygard [6] and
Simo and Rafai [7] to enforce constraints on the stiffness formulation
to guarantee the element model passing the patch test. MacNeal [8],
Kim [9], Hanssan and Sandberg [10] and more recently Fried and
Chavez [11] and Fried and Leong [12] obtained superconvergent
models (SCM) by eigen-value convergence analysis for rod, beam and
membrane elements in a local coordinate. Stavrinidis et al. [13] and
Ahmadian et al. [14] derived superconvergent element formulations
by minimizing the discretization errors for several elements in local
ll rights reserved.

n).
coordinates. The drawback in these inverse approaches is that the
element model is obtained in local coordinate system and as no shape
function is employed in element model development, one is not
capable to map the element model from local to global coordinates.
This restricts the use of obtained models using inverse strategy in
modeling practical structures.

To overcome this problem, Kim [9] proposed a method for
obtaining shape functions of superconvergent rod element. He
used a linear combination of shape functions associated with
lumped and consistent mass matrices and adjusted the weighting
for each function to achieve the superconvergent finite element
model. In this method the diagonal components of mass matrix
are always smaller than the diagonal components of the SCM
obtained by an inverse approach, while the off-diagonal compo-
nents are greater than those associated with SCM. SCM models of
elements with rotational degrees of freedom such as beam [13]
and bending plate elements cannot be established with a linear
combination of lumped and consistent models. Therefore Kim’s
method cannot be used in these situations.

In this paper trigonometric series are used to establish the
shape functions for SCMs. Trigonometric functions have been
used as shape functions for vibration analysis of membranes [15]
and Timoshenko beam element [16]. More recently, Shavezipur
and Hashemi [17] used trigonometric shape function for analyz-
ing non-uniform beams using refined dynamic finite element
method. Christian [18] used trigonometric shape functions for
investigating local buckling of stiffened composite plates.

The trigonometric series employed in the current paper to
establish the shape functions for SCMs include some un-attributed
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coefficients. These coefficients are set such that the obtained finite
element model regenerates the SCM and also the corresponding
shape functions satisfy the general requirements of compatibility,
completeness, physically justifiable, etc. Using these shape func-
tions, element model can be transformed from local to global
coordinate systems. To demonstrate the efficiency of the method
the shape functions for rod and transverse vibration membrane
SCM are obtained using the proposed method. It is shown the
eigen-value convergence rate remains the same when supercon-
vergent element formulation is transformed to global coordinate
using the obtained trigonometric shape functions.

The proposed approach specifies the shape functions of super-
convergent eigen-value finite element models defined for linear
systems with constant coefficient mass and stiffness matrices. As
the nonlinearities in structures are usually due to stiffness or
damping effects and the mass matrices of the model remain
constant, the superconvergent mass models discussed in this
paper can also be used in these problems to accurately represent
the inertial forces of the model.

The rest of the paper runs as the following. In Section 2, the
essential properties of shape functions are discussed. These
properties are then enforced in development of shape functions
for superconvegent element models. Sections 3 and 4 demon-
strate the basic concept of developing trigonometric shape func-
tions for SCMs of rod element and transverse vibration membrane
element. Section 5 studies the performance of the mapped
membrane element SCM using a numerical example, followed
by the concluding remarks in Section 6.
2. Essential properties of shape functions

The quality of approximation achieved by Rayleigh–Ritz and
FE approaches depends on the admissible assumed trial, field or
shape functions. These functions can be chosen in many different
ways. The most universally preferred method is the use of simple
polynomials. It is also possible to use other functions such as
trigonometric functions [15,18]. In general these functions must
meet certain conditions. These conditions reported in references
[19–21] are as follows:
1.
 Vertex modes have unit magnitude at one vertex and zero at
all other vertices. A node (number i), with its coordinates
represented by vector qi, i.e. (xi, yi) or (xi, yi, zi) for two or three
dimensional elements, respectively, with shape function Ni

possesses the following global Kronecker property:

NiðqjÞ ¼ dij )
1 for i¼ j

0 for ia j
:

(
ð1Þ
2.
 Edges modes have magnitude along one edge and zero at all
edges and vertices, i.e. vanishes over any element boundary (a
side in 2D and a face in 3D) that does not include node i.
3.
 Inter-element compatibility and degrees of continuity (C0,
C1,y).
4.
 Completeness condition.

5.
Fig. 1. Rod model element DOFs.
Physical requirements that are imposed on shape functions,
such as rigid body modes, element symmetry axes, etc.

The first four conditions are much explained in the literature.
Moreover conditions 3 and 4 are consequences of the conver-
gence requirements.

The physical requirements are related to the element geome-
try. The element has some rigid body modes. The selected shape
functions must provide element deformed shapes compatible
with the rigid body requirements. Also when the element has
some symmetry axes the shape functions must represent these
geometric properties. Consider two nodes of an element with
geometric symmetry about an axis. By rotating the shape function
associated with the first node about this axis the shape functions
associated with the second node is obtained.

These essential requirements on the shape functions and the
condition regarding their integral products produce the SCM that
are imposed on trigonometric series to obtain the shape functions
corresponding to the SCMs. The number of series terms is defined
by the number of requirements that must be satisfied.

In the following the above requirements are enforced on
truncated trigonometric series to obtain the shape functions of
one- and two-dimensional rod and membrane elements.
3. Rod and beam elements with trigonometric shape
functions

In this section, examples of rod and beam SCM are provided to
demonstrate the procedures of determining their shape functions.

A two-node axial vibration rod element with length L, as
shown in Fig. 1, is considered. Each node has one degree of
freedom and the stiffness matrix, consistent and lumped mass
matrices are

K ¼
EA

L

1 �1

�1 1

� �
, MC ¼

mL

6

2 1

1 2

� �
, ML ¼

mL

2

1 0

0 1

� �
, ð2Þ

where m is the mass per unit length of the rod element, E is the
module of elasticity and A is the cross section area. The eigen-
convergence of rod element using lumped and consistent mass
matrices is of the same order and their errors are of the order
O(L4). McNeal [8] and Stavrinidis et al. [13] showed a SCM for rod
element can be obtained by averaging of the lumped and
consistent mass models:

Mave ¼
mL

12

5 1

1 5

� �
: ð3Þ

The averaged mass matrix produces eigen-solutions with the
fourth order accuracy and the discretization errors are of the
order O(L6) [13]. There is not any shape functions associated with
the averaged mass matrix reported in the literature. One may use
trigonometric functions to produce shape functions associated
with the averaged mass matrix of Eq. (3). To obtain shape
functions one should take the following steps.

The displacement field of the rod element is defined as

uðxÞ ¼N1ðxÞu1þN2ðxÞu2: ð4Þ

where N1(x) and N2(x) are shape functions of rod element.
Stavrinidis et al. [13] and Stavrinidis [22] considered the trigono-
metric shape functions N1 ¼ cosðpx=2LÞ2, and N2 ¼ sinðpx=2LÞ2

and obtained the mass matrix:

M¼
mL

8

3 1

1 3

� �
: ð5Þ

The resultant mass matrix produces a second order conver-
gences rate in eigen-solutions. Following Stavrinidis et al. [13]
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and Stavrinidis [22] we select the following trigonometric series
for the shape function N1(x) associated with the non-consistent
mass matrix of (3) as

N1ðxÞ ¼
XN

n ¼ 1

ancos
ð2n�1Þpx

2L

� �2

: ð6Þ

The shape function N2(x) is then readily available using rigid
body requirement:

N2ðxÞ ¼ 1�N1ðxÞ: ð7Þ

The selected series satisfies the first four conditions mentioned
in Section 2 provided that

N1ð0Þ ¼
XN

n ¼ 1

an ¼ 1: ð8Þ

The element has one symmetry axis and requires the following
relations on the shape functions:

N2ðxÞ ¼N1ðL�xÞ, ð9Þ

This leads to the requirement defined in Eq. (8), indicating the
selected series reflects the physical properties of the element:

N1ðxÞþN1ðL�xÞ ¼ 1,

)
XN

n ¼ 1

an cos
ð2n�1Þpx

2L

� �2

þcos
ð2n�1ÞpðL�xÞ

2L

� �2
 !

¼
XN

n ¼ 1

an ¼ 1:

ð10Þ

The shape functions N1(x) and N2(x) are required to produce
the superconvergent mass matrix of (3), i.e.Z L

0
N2

1ðxÞdx¼

Z L

0
N2

2ðxÞdx¼
5

12
,

Z L

0
N1ðxÞN2ðxÞdx¼

1

12
: ð11Þ

The identities of (11) add only one more quadratic equation
that brings the total number of equations regarding the coeffi-
cients of the series defined in Eq. (6) into two. There are two
equations to be satisfied and it is decided to set N¼2. The series
coefficients of the trigonometric function of (6) are obtained as
a1 ¼ 1=2þ

ffiffiffiffiffiffi
15
p

=6 and a2 ¼ 1=2�
ffiffiffiffiffiffi
15
p

=6 leading to

N1ðxÞ ¼
1

2
þ

ffiffiffiffiffiffi
15
p

6

 !
cos

px

2L

� �2

þ
1

2
�

ffiffiffiffiffiffi
15
p

6

 !
cos

3px

2L

� �2

: ð12Þ

The resulting shape functions are shown in Fig. 2. The rod SCM
element is derived using these shape functions, a task which was
Fig. 2. The shape functions of rod element (N1(x)—red, N2(x)—blue). (For inter-

pretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)
not successful by combination of consistent and lumped shape
functions [9].

A similar procedure as in the case of rod element is followed to
obtain associated C1 continuity shape functions of a supercon-
vergent beam element. Stavrinidis et al. [13] derived a super-
convergent model for the Euler–Bernoulli beam element using an
inverse approach as

K ¼
1

dx3

12 6 �12 6

4 �6 2

12 �6

sym 4

2
66664

3
77775, M¼

dx

840

326 �51 94 19

15 �19 �6

326 51

sym 15

2
66664

3
77775:

ð13Þ

Trigonometric series for the shape functions Nk(z), k¼1,2,3,4
associated with the non-consistent mass matrix of (13) are
selected based on Beslin and Nicolas proposal [26] as

NkðzÞ ¼
XN

r ¼ 1

ek,rsinð2arzþ2brÞsinð2crzþ2drÞ, r¼ 1,2,3,. . . ð14Þ

The coefficients of these hierarchical functions ar, br, cr and dr

are tabulated in Table 1. The first four terms satisfy beam classical
boundary conditions and higher order terms are used to improve
the element convergence properties. These higher order terms
have zero nodal displacements and slopes.

The shape function N1(z) is unity at z¼0 and zero at z¼1 with
zero slopes at these nodes. These boundary conditions are
satisfied by including the term r¼1 in the series defined in (14).
The shape function N1(z), apart from a constant shift, is anti-
symmetric with respect to the beam symmetry axis and this
property is reflected in the associated series by selecting even
orders of r44, i.e.

N1ðzÞ ¼ e1,1cos2ð pz=2Þ�e1,6sinð2pzÞsinðpzÞ�e1,8sinð4pzÞsinðpzÞþ � � �
ð15Þ

The symmetry of the element enables one to define N3(z) by
rotating function N1(z) about the symmetry axis as

N3ðzÞ ¼N1ð1�zÞ: ð16Þ

The requirement (16) results

N3ðzÞ ¼ e1,1sin2
ðpz=2Þþe1,6sinð2pzÞsinðpzÞ

þe1,8sinð4pzÞsinðpzÞþ � � � ð17Þ

Similarly the shape function Nk(z), k¼2,4 can be composed of
trigonometric hierarchical functions (14) as

N2ðzÞ ¼ e2,2sinðpzÞcosðpz=2Þþe2,5sin2
ðpzÞþe2,6sinðpzÞsinð3pzÞ

þe2,7sinðpzÞsinð2pzÞþe2,8sinðpzÞsinð4pzÞþ � � � ð18Þ

The shape function N2(z) contains the series term r¼2 to
satisfy the related boundary conditions, and all orders of r44 as
this function is neither symmetric nor anti-symmetric with
respect to the beam symmetry axis. The shape functions Nk(z),
k¼2,4 must represent the symmetry properties of element, i.e.

N4ðzÞ ¼�N2ð1�zÞ: ð19Þ
Table 1
The trigonometric series coefficients [27].

r ar br cr dr

1 p
4

3p
4

p
4

3p
4

2 p
4

3p
4

� p
2 � 3p

2

3 p
4 � 3p

4
p
4 � 3p

4

4 p
4 � 3p

4
p
2 � 3p

2

r44 p
2 ðr�4Þ p

2 ðr�4Þ p
2

p
2
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This leads to

N4ðzÞ ¼�e2,2sinðpzÞ sinðpz=2Þ�e2,5sin2
ðpzÞ�e2,6sinðpzÞsinð3pzÞ

þe2,7sinðpzÞsinð2pzÞþe2,8sinðpzÞsinð4pzÞþ � � � ð20Þ

The unknown coefficients of shape functions Nk(z), k¼1,y,4
can be determined from further requirements that they must
reproduce the superconvergent mass matrix of (13)

Mij ¼

Z 1

0
NiðzÞ NjðzÞdz: ð21Þ

These coefficients are obtained up to r¼8 using requirements
(21) as

e1,1 ¼ 1, e1,6 ¼ 0:003, e1,8 ¼�0:221, e2,2 ¼ 0:318,

e2,5 ¼�0:104, e2,6 ¼�0:100, e2,7 ¼ 0:032, e2,8 ¼�0:138:

ð22Þ

The element has two rigid body modes and the defined shape
functions produce these modes:

N1ðzÞþN3ðzÞ ¼ 1,

N3ðzÞ�N1ðzÞ
2

þN2ðzÞþN4ðzÞ ¼ z�
1

2
: ð23Þ

Similarly shape functions of other C1 element types such as
bending plate elements can be obtained using these trigonometric
hierarchical functions as defined in Ref. [26].

The rod and beam examples demonstrate the important steps
in obtaining the shape functions of a SCM. The same steps will be
followed in the next section to construct trigonometric shape
functions for SCM of a transverse vibrating membrane element.
4. Four-nodes square membrane element

A membrane is characterized by dominating tension and a
negligible resistance for bending [23]. The membrane vibration
problem as the simplest two-dimensional problem is considered
by number of researchers [11,12,24], and is used to verify the
performance of numerical techniques [3].

In this paper, a four-node square transverse vibrating mem-
brane element of side length dx as shown in Fig. 3 is considered.
The element has one out-of plane degree of freedom at each node.
The normalized stiffness matrix for transverse vibrating square
membrane element and its consistent and lumped mass matrices
developed using bilinear shape functions are [25]

K ¼
1

6

4 �1 �2 �1

4 �1 �2

4 �1

sym 4

2
66664

3
77775, MC ¼

dx2

9

4 2 1 2

4 2 1

4 2

sym 4

2
66664

3
77775,

ML ¼
dx2

9

1 0 0 0

1 0 0

1 0

sym 1

2
66664

3
77775: ð24Þ
Fig. 3. Four-node square transverse vibrating membrane element.
The eigen-problems formed using consistent and lumped mass
matrices produce second order convergence rates in eigen-solu-
tions while the weighted averaged of lumped and consistent mass
matrix leads to a fourth order eigen solution convergence rate [11]:

Mave ¼
dx2

48

7 2 1 2

7 2 1

7 2

sym 7

2
66664

3
77775: ð25Þ

No shape functions associated with this mass matrix are
reported in the literature. This paper employs two-dimensional
trigonometric functions to obtain shape functions corresponding
to the superconvergent mass model. The steps followed to obtain
shape functions of membrane SCM are the same as those of rod
SCM. First, the displacement field of the element is defined:

wðz,ZÞ ¼N1ðz,ZÞw1þN2ðz,ZÞw2þN3ðz,ZÞw3þN4ðz,ZÞw4, ð26Þ

where z and Z are natural coordinates of the elements z¼x/dx

Z¼y/dx as shown in Fig. 3. The element has one rigid body mode,
which establishes the following requirement on the shape func-
tions of the membrane element:

N4ðz,ZÞ ¼ 1�N1ðz,ZÞ�N2ðz,ZÞ�N3ðz,ZÞ: ð27Þ

The shape functions are expressed as linear combinations of
the trigonometric functions as

N1ðz,ZÞ ¼
XN

n ¼ 1

XN

m ¼ 1

anmcos
ð2m�1Þpz

2

� �2

cos
ð2n�1ÞpZ

2

� �2

,

N2ðz,ZÞ ¼
XN

n ¼ 1

XN

m ¼ 1

anmcos
ð2m�1Þpz

2

� �2

sin
ð2n�1ÞpZ

2

� �2

,

N3ðz,ZÞ ¼
XN

n ¼ 1

XN

m ¼ 1

anmsin
ð2m�1Þpz

2

� �2

sin
ð2n�1ÞpZ

2

� �2

: ð28Þ

The element has two symmetry axes and an applied displace-
ment at one node while the other nodes are fixed, apart from a
constant, produces an anti-symmetric deformation w(z,Z) with
respect to the element coordinates. The selected form for the
shape functions in Eq. (28) reflects this fact. Also the produced
deformations along both element deformed edges are the same
and therefore the numbers of series terms in both directions are
kept the same. Changing the unit displacement practice from one
node to the neighboring one the deformation field of the element
is rotated by p/2 about axes normal to the element plane. This
property is also regarded in the functions introduced in Eq. (28).
Stavrinidis et al. [13] used the first term of these series to obtain
mass matrix of rectangular in-plane element.

There are two more requirements that must be satisfied by
series defined in Eq. (28) leading to specifications of series
coefficients anm. They are
1.
 The function Ni(z,Z), i¼1,2,3, must be unity at node i and zero
at other nodes, i.e.

XN

n ¼ 1

XN

m ¼ 1

anm ¼ 1: ð29Þ

This requirement produces a linear relation between the series
coefficients.
2.
 These functions must produce the entries of membrane SCM
defined in Eq. (14):ZZ

A
Niðz,ZÞNjðz,ZÞdA¼mij: ð30Þ

The requirements defined in Eqs. (29) and (30) produce four
independent equations to be satisfied and therefore N is set equal



Fig. 4. Shape function N1(z,Z) of transverse vibrating membrane element.

Fig. 5. The open sectorial membrane and its finite elements mesh.

Fig. 6. Two-dimensional ‘mapping’ of the square element.
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to 2. The series coefficients of shape functions Ni(z,Z), i¼1,2,3, are
obtained as

a12 ¼

a11 ¼ 1þb,

a21 ¼�b, b¼ 551
4178 :

a22 ¼ b,

ð31Þ

The obtained trigonometric shape function N1(z,Z) of square
membrane SCM is shown in Fig. 4. The other three shape
functions are obtained by rotation of N1(z,Z) about the axis
normal to the element plane.

The newly obtained shape functions are employed to trans-
form element formulation from local to global coordinate systems
and use the superconvergence property of the model in global
coordinate. The element displacement field is transformed using
the trigonometric shape functions whereas the geometry of
element is mapped by employing bilinear shape functions.

Numerical performance of the model obtained using the new
shape functions for transverse vibrating membrane element and
its convergence rate in estimating the membrane eigen-values are
demonstrated in the next section.
Fig. 7. Error in estimation of fundamental eigenvalue of the clamped membrane

(SCM—J, Consistent model—*, Combinative model—& [10]).

Fig. 8. Error in estimation of second eigenvalue of the clamped membrane

(SCM—J, Consistent model—*, Combinative model—& [10]).
5. Numerical example

A simply supported sectorial membrane with a/b¼0.5 and
f¼901 as shown in Fig. 5 is considered. The fundamental
frequency parameter for such a sectorial membrane is O11¼

6.8138 [24]. The sectorial membrane is analyzed by transforming
the square elements into quadrilateral elements as shown in Fig. 6.
The consistent model, the model proposed by Hansson and Sand-
berg [10], obtained by linear combination of lumped and consistent
element shape functions and membrane SCM, is mapped into
global coordinate. The element geometry and displacements are
mapped by bilinear shape functions for the consistent model while
in cases of models proposed in [10] and membrane SCM the
element geometry is mapped by bilinear shape function and the
displacement fields are mapped by each model’s respective shape
function. The stiffness model, given in Eq. (24), is mapped using the
bilinear shape functions in all models.

In order to investigate the convergence rate of solutions
estimated by various membrane element models, the eigen-
predictions obtained by the model proposed in [10], the consis-
tent model and membrane SCM are shown in Figs. 7–9 for the
sectorial membrane with different number of meshes. Figs. 7–9
show the error in the computed natural frequencies of the
sectorial membrane versus the number of radial elements on



Fig. 9. Error in estimation of third eigenvalue of the clamped membrane

(SCM—J, Consistent model—*, Combinative model—& [10]).

Table 2
The fundamental eigenvalue of membrane obtained using the SCM.

N

4 point Gauss quadrature 9 point Gauss quadrature

4 6.680669213 6.680669213

6 6.788071811 6.788071812

8 6.806441098 6.806441099

10 6.811234720 6.811234721
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logarithm scale. The number of meshes in radial direction is twice
as that in angular direction. In this example the convergence rate
of mapped membrane SCM is of order four while the consistent
and the combinative [10] formulations produce convergence rate
of the order two in estimating the first three eigen-values.

In deriving the membrane element formulation in local coordi-
nates no numerical integration procedure is employed and the
model is obtained analytically. However in transforming the
element mass matrix from local to global coordinates, displace-
ment fields are mapped by the respective shape functions and the
integrals are performed based on Gauss–Legendre quadrature rule.

As shown in reference [27] the order of Gauss quadrature in the
mass formulation has negligible influence on the lower eigen-
values. And substantial saving in computation time is achieved
when a low-order Gauss quadrature is used for the evaluation of
the mass matrix. To verify this influence the mass matrix of
membrane numerical example in Section 5 is evaluated using
4 and 9 Gauss points. The fundamental eigenvalue obtained from
these two mass matrices for different number of elements along
radial sides (N¼4, 6, 8, 10) is shown in Table 2. It can be seen there
are no significant differences between the two sets of results.
6. Conclusion

Trigonometric functions are employed to define shape func-
tions of SCM obtained by eigen-value convergence analysis, or
minimizing the discretization errors. These trigonometric shape
functions are then used to transform the displacement field of
element under consideration to the global coordinates. The
improvements in estimating the eigen-value using trigonometric
shape functions in global coordinate are demonstrated using an
example of sectorial transverse vibrating membrane. It is shown
the accuracy of SCM is kept unchanged in global coordinates and
higher order of accuracy is achieved compared to the common
formulations existing in the literature.
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