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Abstract A Differential Quadrature proposed here can be
used to solve boundary-value and initial-value differential
equations with a linear or nonlinear nature. Unlike the
classic Differential Quadrature Method (DQM), the newly
proposed Differential Quadrature chooses the function
values and some derivatives wherever necessary as inde-
pendent variables. Therefore, the d-type grid arrangement
used in the classic DQM is exempt while applying the
boundary conditions exactly. Most importantly, the ex-
plicit weighting coef®cients can be obtained using the
proposed procedures. The present method is used to solve
two types of differential equations which are the single-
span Bernoulli±Euler beam's buckling equation and the
one-degree-of-freedom solid dynamic equation. Excellent
results were obtained.

1
Introduction
The Differential Quadrature Method (DQM) was proposed
by Bellman and Casti (1971) and has been employed re-
cently in the solution of solid mechanics problems by Bert
and Malik (1996a, b), Chen et al. (1997), Jang et al. (1989a,
b), Kang et al. (1995), Kukreti et al. (1992) and Striz et al.
(1988). Details on the development of the DQM and its
application to structural mechanics problems may be
found in an excellent review paper by Bert and Malik
(1996a). A d-point technique (Bert and Malik 1996a, b) has
been employed in the DQM's application to boundary-
value differential equations with multiple conditions. But
the initial-value differential quadrature method for struc-
tural dynamics has not been reported until now to the best
of the authors' knowledge.

1.1
The classic Differential Quadrature Method (DQM)
Consider a one-dimensional ®eld variable w�x� prescribed
in a ®eld domain a � x1 � x � xN � b. Let wi � w�xi� be
the function values speci®ed in a ®nite set of N discrete
points xi�i � 1; 2; . . . ;N� of the ®eld domain in which the
end points x1 and xN are included. Next, consider the value
of the function derivative drw=dxr at some discrete points

xi, and let it be expressed as a linearly weighted sum of the
function values.

w�r��xi� � drw�xi�
dxr

�
XN

j�1

A
�r�
ij wj �i � 1; 2; . . . ;N�

�1�
where A

�r�
ij are the weighting coef®cients of the rth-order

derivative of the function w�x� associated with points xi.
Equation (1), the quadrature rule for a derivative, is the

essential basis of the Differential Quadrature Method. Thus
using Eq. (1) for various order derivatives, one may write a
given differential equation at each point of its solution
domain and obtain the quadrature analog of the differential
equation as a set of algebraic equations in terms of the N
function values. These equations may be solved, in con-
junction with the quadrature analog of the boundary con-
ditions, to obtain the unknown function values provided
that the weighting coef®cients are known a priori.

The weighting coef®cients may be determined by some
appropriate functional approximations; and the approxi-
mate functions are referred to as test functions. The pri-
mary requirements for the choices of the test functions are
of completeness in the same sense as one needs for the
interpolation functions in the ®nite element analysis
(Huebner 1975). Although there can be many choices of
the test functions, a convenient and most commonly used
choice in one-dimensional problems is the Lagrangian
interpolation shape functions lj�x�, where

w�x� �
XN

j�1

lj�x�wj �2�

lj�x� are the monomials of the (N ÿ 1�th-order polyno-
mials. Note that the number of test functions is equal to
the number of the sampling points and, for completeness,
the number of sampling points should at least be equal to
one plus the order of the highest derivatives.

Substituting lj�x� of Eq. (2) into Eq. (1), it may be seen
that the weighting coef®cients can be easily obtained. The
detailed procedures can be found in references (Shu and
Richards 1992, Quan and Chang 1989).

1.2
The polynomial-test-function-based weighting coefficients
The accuracy of differential quadrature solution depends
on the accuracy of the weighting coef®cients. To obtain
accurate weighting coef®cients, Quan and Chang (1989)
derived explicit formulae of the Lagrangian-interpolation-
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function-based weighting coef®cients for the ®rst- and
second-order derivatives. Shu and Richards (1992) gave a
general recurrence relationship for any high-order deriv-
atives. These formulae were obtained by considering the
test function in the Lagrangian interpolation process as in
Eqs. (1) and (2). These explicit formulae's merit is that
highly accurate weighting coef®cients may be determined
for any number of arbitrarily spaced sampling points.

But both the explicit formulae and the recursive algo-
rithm mentioned earlier are not new. Villadsen and
Michelsen (1978) and Quan and Chang (1989) have shown
that the weighting coef®cients of rth-order derivatives of
the Lagrangian interpolation test functions are

A
�r�
ij �

dr

dxr
lj�xi� �i; j � 1; 2; . . . ;N� �3�

where:

lj�x� � /�x�
�xÿ xj�/�1��xj�

; /�x� �
YN
m�1

�xÿ xm�;

/�1��xj� � d/�xj�
dx

�
YN

m�1;m6�j

�xj ÿ xm�

and xi's are the locations of the grid points. N is the
number of sampling points. Note that Eq. (3) is valid as
long as linearly independent polynomials are used as the
trial functions and, thus, the values of the coef®cients are
affected only by the distribution of the grid points. Also
the linearly independent polynomials should be complete.
Note that the Lagrangian interpolation shape functions
lj�x� have the following properties

lj�xi� � dij � 1 if i � j
0 if i 6� j

�
�4�

Using Eqs. (1), (2), and (3) based on Lagrangian inter-
polation shape functions, Quan and Chang (1989) and Shu
and Richards (1992) obtained the following weighting
coef®cients:

A
�1�
ij �

dlj�xi�
dx

� /�1��xi�
�xi ÿ xj�/�1��xj�
�i; j � 1; 2; . . . N; i 6� j�

A
�r�
ij �

drlj�xi�
dxr

� r A
�rÿ1�
ii A

�1�
ij ÿ

A
�rÿ1�
ij

�xi ÿ xj�

 !
�i; j � 1; 2; . . . N; i 6� j; r � 2�

A
�r�
ii �

drli�xi�
dxr

� ÿ
XN

j�1;i6�j

A
�r�
ij �i � 1; 2; . . . ;N; r � 1� �5�

1.3
Normal serial sampling points
A convenient and natural choice for the sampling points is
that of the equally spaced sampling points. These are given
in the normalized coordinate [0,1] by

xi � iÿ 1

N ÿ 1
�i � 1; 2; . . . ;N� �6�

But the Differential Quadrature solutions usually deliver
more accurate results with unequally spaced sampling
points. A rational basis for the sampling points is provided
by the zeros of the orthogonal polynomials. A well ac-
cepted kind of sampling points in the DQM is the so-called
Gauss±Lobatto±Chebyshev points:

xi � 1ÿ cos��iÿ 1�p=�N ÿ 1��
2

�i � 1; 2; . . . ;N�
�7�

These normal serial Gauss±Lobatto±Chebyshev sampling
points ± Eq. (7) are used here in the beam buckling
analysis.

1.4
Inverse node numbering
In the time coordinate, one usually numbers the discrete
time points from the beginning accordingly. For notation's
convenience in the solid dynamics problems, these authors
use the inverse node numbering as in space-rocket
launching. That is: one can use the initial time point as the
N point and the time domain end point as the ®rst point.
These authors' numbering in dynamics problems is just
contrary to the normal time-coordinate direction num-
bering. The suggested numbering method is very conve-
nient for notation and programming. Please notice that in
the Lagrangian interpolation process, the discrete point's
numbering can be arbitrary. Thus in the normalized time
coordinate s, s � [0,1], the inverse node numbering
equations which correspond to Eqs. (6) and (7) in the
normal serial sampling points are

si � N ÿ i

N ÿ 1
�i � 1; 2; . . . ;N� �8�

si � 1ÿ cos��N ÿ i�p=�N ÿ 1��
2

�i � 1; 2; . . . ;N�
�9�

This Gauss±Lobatto±Chebyshev inverse node numbering ±
Eq. (9) is used here in the dynamics problems.

1.5
Recent developments of the DQM
Usually, the fourth-order differential equations in struc-
tural mechanics such as beam and plate's displacement,
buckling and free-vibration analysis have two boundary
equations at each boundary. Two conditions at the same
point provoke a big and real challenge for the classic
Differential Quadrature Method, because in the classic
DQM we have only one quadrature equation at one point
but two boundary equations are to be implemented.
Therefore, Bert and Malik (1996a, b), Jang et al. (1989a, b),
Kang et al. (1995), Kukreti et al. (1992) and Striz et al.
(1988) proposed the d-type grid arrangements, that is,
besides the two boundary points, two additional adjacent
points with an order of 10ÿ5 (on a normalized spatial
variable) distance to the boundary points were also treated
as boundary points. Therefore, there are two boundary
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points at each boundary corresponding to their two re-
spective boundary conditions.

In solid dynamics problems, one has two initial con-
ditions at the initial time, that is the initial displacement
and initial velocity. The same problems (two conditions at
the same point) were also encountered. Therefore no one
paper has appeared about solid dynamics problems solved
by the classic DQM.

Although the d-type grid arrangements work well for
some circumstances, this man-made boundary grid ar-
rangement is not mathematically sound and will some-
times cause ill-conditioned problems (Bert and Malik
1996a). No matter how small the d distance is, it's still a
domain point. A mathematically reasonable d distance is
zero. This is the essence in these authors' proposed Dif-
ferential Quadrature discussed below.

Recently, Chen et al. (1997) and Wang and Gu (1997)
presented a new idea about treating boundary conditions
in the DQM. These improved approaches eliminate the
de®ciencies of the d-type grid arrangements by applying
the boundary conditions exactly. But Chen et al. (1997)
used the direct linear solver for the determination of
weighting coef®cients. Wang and Gu (1997) only gave 3-,
4- and 5-point beam elements' explicit weighting coef®-
cients. This paper will propose a Differential Quadrature to
apply the multiple boundary or initial conditions exactly
without using the d-point technique. The explicit weight-
ing coef®cients are also presented through two types of
differential equations.

2
The newly proposed Differential Quadrature
The newly proposed Differential Quadrature considers a
general situation. A one-dimensional ®eld variable w�x� is
prescribed by a differential equation in a ®eld domain
a � x1 � x � xN � b and may also be constrained by a set
of given conditions at any points. The solution domain is
divided by points xi�i � 1; 2; . . . ;N� that include all the
points with given conditions. Let w�k�i � w�k��xi�
�k � 0; 1; 2; . . .� be its kth-order derivatives. Of course,
w�0�i � wi are the function values. Let ni denote the number
of equations corresponding to the point xi. The biggest k
corresponding to point xi is the number of equations
(which that point has) minus one (ni ÿ 1). These authors
call w�k�i � w�k��xi� �k � 0; 1; 2; . . . ; ni ÿ 1) the indepen-
dent variables, which that point xi has. The independent
variables are chosen to be the function value and its de-
rivatives of possible lowest order wherever necessary. For
the examples discussed later, in the beam buckling anal-
ysis, n1 � nN � 2, n2 � n3 � � � � � nNÿ1 � 1. In the dy-
namics problem, nN � 2, n1 � n2 � � � � � nNÿ1 � 1.

The ®eld function's interpolation expression is
constructed in the proposed Differential Quadrature
just as in the numerical analysis and the ®nite element
method. These authors use Hermite interpolation shape
functions.

w�x� �
XN

j�1

hj0�x�w�0�j � hj1�x�w�1�j � � � �
�
�hj�njÿ1��x�w�njÿ1�

j

�
� fh10�x�; h11�x�; . . . ; h1�n1ÿ1��x�; . . . ;

hN0�x�; hN1�x�; . . . ; hN�nNÿ1��x�
	T

� fw�0�1 ;w�1�1 ; . . . ;w�n1ÿ1�
1 ; . . . ;w�0�N ;

w�1�N ; . . . ;w�nNÿ1�
N g

�
XM

k�1

hk�x�Uk �10�

where

M �
XN

j�1

nj;

Ukf g � U1;U2; . . . ;UMf g
� fw�0�1 ;w�1�1 ; . . . ; :

w�n1ÿ1�
1 ; . . . ;w�0�N ;w�1�N . . . ;w�nNÿ1�

N g;
hkf g � h1; h2; . . . ; hMf gT

� h10�x�; h11�x�; . . . ; h1�n1ÿ1��x�; . . . ; hN0�x�;
�

hN1�x�; . . . ; hN�nNÿ1��x�
	T

The hj0�x�; . . . ; hj�njÿ1��x� �j � 1; 2; . . . ;N� are Hermite
interpolation shape functions. Their properties are listed
in Table 1 when x � xj, and its number's shape in Table 1
is identical to the identity matrix.

When the discrete points are not at point xj, the values
of hj0�x�; . . . ; hj�njÿ1��x� and their derivatives of any pos-
sible order corresponding to that point are all zero. Notice
that the highest order of derivative corresponding to that
point is that point's total number of independent variables
minus one.

Polynomial functions are often used in the FEM, but not
restricted to, so are the test functions in the proposed
Differential Quadrature. In this paper, polynomial func-
tions are given as examples.

From Eq. (10) one has

Table 1. The properties of
Hermite interpolation shape
functions when x = xj

h
�i�
j0 �xj� h

�i�
j1 �xj� . . . . . . h

�i�
j�njÿ1��xj�

hj0�xj� 1 hj1�xj� 0 . . . . . . hj�njÿ1��xj� 0

h
�1�
j0 �xj� 0 h

�1�
j1 �xj� 1 . . . . . . h

�2�
j�njÿ1��xj� 0

. . . . . . 0 . . . . . . 0 . . . . . . . . . . . . 0

h
�njÿ1�
j0 �xj� 0 h

�njÿ1�
j1 �xj� 0 . . . . . . h

�njÿ1�
j�njÿ1��xj� 1
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drw�xi�
dxr

�
XN

j�1

h
�r�
j0 �xi�w�0�j � h

�r�
j1 �xi�w�1�j

�
� � � � � h

�r�
j�njÿ1��xi�w�njÿ1�

j

�
� h

�r�
10 �xi�; h�r�11 �xi�; . . . ; h

�r�
1�n1ÿ1��xi�; . . . ;

n
h
�r�
N0�xi�; h�r�N1�xi�; . . . ; h

�r�
N�nNÿ1��xi�

oT

� w�0�1 ;w�1�1 ; . . . ;w�n1ÿ1�
1 ; . . . ;w�0�N ;

n
w�1�N ; . . . ;w�nNÿ1�

N

o
�
XM

k�1

E
�r�
ik Uk �i � 1; 2; . . . ;N� �11�

where E
�r�
ik are called the weighting coef®cients of the rth-

order derivative of the function at point xi.
Equation (11) is the expression of the newly proposed

Differential Quadrature. Comparing the Eqs. (10) and (11),
one obtains

E
�r�
ik � h

�r�
k �xi� �12�

The most important viewpoint in the proposed Differential
Quadrature is that the total number of equations at a point
is equal to the total number of the independent variables at
that point, and that independent variables are always the
function value and its derivatives of possible lowest order
wherever necessary. In most cases, most nj equal one,
therefore only their function values are independent
variables. If all nj are one, the case is the classic Differential
Quadrature Method. Therefore the classic DQM is a spe-
ci®c case of the proposed Differential Quadrature.

This work also gives the explicit weighting coef®cients of
two types of differential equations through examples. The
polynomial test functions with reference to Lagrangian in-
terpolation shape functions are used to obtain the explicit
weighting coef®cients. Other problems' explicit weighting
coef®cients can be obtained in a similar procedure.

For points with more than one equation such as single-
span beam's end points, the more than one independent
variable is introduced to implement the same number of
equations. Then the de®ciencies of the d-type grid ar-
rangements are eliminated, and the boundary conditions
are applied directly.

The proposed Differential Quadrature can be extended
to multi-dimensional problems in a similar way as the
DQM. But it must be borne in mind that the total number
of independent variables at a point must be equal to the
total number of equations from that point. The two-di-
mensional problems have been discussed in another paper.

In conclusion, the DQM has only the function values as
the independent variables. Therefore at one point only one
differential quadrature analog can be implemented. But in
the newly proposed Differential Quadrature one has the
function value and its derivatives wherever necessary as
the independent variables. Thus at one point, more than
one differential quadrature analog can be implemented in
the proposed Differential Quadrature. The resulting

weighting coef®cient of the DQM is a matrix of N � N . But
the resulting weighting coef®cient of the proposed Dif-
ferential Quadrature is a matrix of N �M.

To illustrate the generality and accuracy of the pro-
posed Differential Quadrature using the explicit weighting
coef®cients, two examples are to be cited. One example is
single-span Bernoulli±Euler beam's buckling analysis, and
the other example is one-degree-of-freedom dynamic
analysis.

3
Single-span Bernoulli±Euler beam's buckling analysis

3.1
Differential Quadrature expression
in this case
The governing equation of single-span Bernoulli±Euler
beam's buckling problem is

d4w

dx4
ÿ P

EI

d2w

dx2
� 0 x � �0; L� � �0; 1� �13�

where w is the transverse displacement function in the y-
direction, E and I denote the modulus of elasticity and
principal moment of inertia about the z-axis, respectively.
P is the compressive axial load.

The single-span Bernoulli±Euler beam has four boun-
dary conditions, two at each end. The beam is divided into
N ÿ 1 sections according to Eq. (7). The boundary con-
ditions are usually the following forms in the buckling
analysis

wi � 0; w
�1�
i � 0; EIw

�2�
i � 0;

EIw
�3�
i � 0 �i � 1 or N� �14�

In this example, one has two boundary points x1 and xN .
At point x1 one has two boundary conditions and thus two
independent variables w1 and w

�1�
1 . At point xN one has

also two boundary conditions and then two independent
variables wN and w

�1�
N . Therefore, n1 � nN � 2,

n2 � n3 � � � � � nNÿ1 � 1, M �PN
j�1 nj � N � 2. Now

Eq. (11) adopts the following expression:

w�r��xi� �
XN

j�1

h
�r�
j0 �xi�wj � h

�r�
11 �xi�w�1�1 � h

�r�
N1�xi�w�1�N

�
XN�2

j�1

E
�r�
ij Uj �15�

where

fE�r�ij g � fh�r�10 �xi�; h�r�11 �xi�; h�r�20 �xi�; . . . ;

h
�r�
N0�xi�; h�r�N1�xi�g

� fh�r�1 �xi�; h�r�2 �xi�; . . . ; h
�r�
N�1�xi�; h�r�N�2�xi�g

Uj

� 	 � fw1;w
�1�
1 ;w2; . . . ;wN ;w

�1�
N g

� U1;U2; . . . ;UN�2f g
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3.2
Interpolation shape function
According to the above-de®ned properties of the inter-
polation shape functions, h10�x� should have the following
properties

h10�x1� � 1; h
�1�
10 �x1� � 0; h

�1�
10 �xN� � 0;

h10�xj� � 0; �j � 2; 3; . . . ;N� �16�
The following h10�x� satis®es the fourth equation in
Eq. (16)

h10�x� � �a1x2 � b1x� c1�l1�x� �17�
Using the ®rst three equations in Eq. (16), the unknown
constants a1, b1 and c1 in Eq. (17) can be obtained. Notice
l1�xN� � 0, l1�x1� � 1 from Eq. (4), then one has

�a1x2
1 � b1x1 � c1�l1�x1� � a1x2

1 � b1x1 � c1 � 1

�2a1x1 � b1�l1�x1� � �a1x2
1 � b1x1 � c1�l�1�1 �x1� � 0

�2a1xN � b1�l1�xN� � �a1x2
N � b1xN � c1�l�1�1 �xN� � 0

8><>:
�18�

Notice that l
�1�
1 �xN� can be obtained from Eq. (5) and isn't

always zero. The third of Eq. (18) is satis®ed only if:

a1x2
N � b1xN � c1 � 0

From this equation and the other two equations in Eq. (18),
one obtains

a1 � ÿ1

x1 ÿ xN� �2 �
ÿl
�1�
1 �x1�

x1 ÿ xN� �
b1 � 1

x1 ÿ xN� � ÿ a1 x1 � xN� �

� 2x1

x1 ÿ xN� �2 �
x1 � xN� �l�1�1 �x1�

x1 ÿ xN� �
c1 � 1ÿ a1x2

1 ÿ b1x1

� xN ÿ 2x1� �xN

x1 ÿ xN� �2 �
ÿx1xN l

�1�
1 �x1�

x1 ÿ xN� � �19�

The h11�x� should have the following properties

h
�1�
11 �x1� � 1; h

�1�
11 �xN� � 0;

h11�xj� � 0; �j � 1; 2; . . . ;N� �20�
The following h11�x� satis®es the third equation in Eq. (20)

h11�x� � d1x� e1� � xÿ x1� �l1�x� �21�
Using the ®rst two equations in Eq. (20), d1 and e1 can be
obtained in a similar way as in Eq. (18).

d1 � 1

x1 ÿ xN
; e1 � ÿxN

x1 ÿ xN

Therefore

h11�x� � xÿ xN

x1 ÿ xN
xÿ x1� � l1�x�

� a11x2 � b11x� c11

ÿ �
l1�x� �22�

where

a11 � 1

x1 ÿ xN
; b11 � ÿ x1 � xN� �

x1 ÿ xN
; c11 � x1xN

x1 ÿ xN

The other interpolation shape functions can be obtained in
an identical manner. Their properties are as follows:

hj0�xj� � 1; h
�1�
j0 �x1� � 0; h

�1�
j0 �xN� � 0; hj0�xi� � 0

�i � 1; 2; . . . ;N; j � 2; 3; . . . ;N ÿ 1; i 6� j� �23�
hN0�xN� � 1; h

�1�
N0�xN� � 0; h

�1�
N0�x1� � 0;

hN0�xi� � 0 �i � 1; 2; . . . ;N ÿ 1� �24�
h
�1�
N1�xN� � 1; h

�1�
N1�x1� � 0;

hN1�xj� � 0; �j � 1; 2; . . . ;N� �25�
Using the identical way as mentioned above, one obtains,
respectively:

hj0�x� � ajx
2 � bjx� cj

ÿ �
lj�x� �j � 2; 3; . . . ;N ÿ 1�

�26�

aj � 1

x2
j ÿ xj x1 � xN� � � x1xN

bj � ÿ x1 � xN� �
x2

j ÿ xj x1 � xN� � � x1xN

cj � x1xN

x2
j ÿ xj x1 � xN� � � x1xN

hN0�x� � aNx2 � bNx� cN

ÿ �
lN�x� �27�

aN � ÿ1

x1 ÿ xN� �2 �
l
�1�
N �xN�
�x1 ÿ xN�

bN � ÿ1

x1 ÿ xN� � ÿ aN x1 � xN� �

� 2xN

x1 ÿ xN� �2 ÿ
x1 � xN� �l�1�N �xN�

x1 ÿ xN� �
cN � 1ÿ aNx2

N ÿ bN xN

� x1 ÿ 2xN� �x1

x1 ÿ xN� �2 �
x1xN l

�1�
N �xN�

x1 ÿ xN� �
hN1�x� � aN1x2 � bN1x� cN1

ÿ �
lN�x� �28�

aN1 � ÿ1

x1 ÿ xN
; bN1 � x1 � xN

x1 ÿ xN
; cN1 � ÿx1xN

x1 ÿ xN

3.3
Explicit weighting coefficients
From Eqs. (12), (15), (17), (22), (26), (27) and (28), one
gets

E
�r�
ij �

dr

dxr
hj�xi�

�i � 1; 2; . . . ;N; j � 1; 2; . . . ;N � 2; r � 1; 2; 3; 4�
�29�
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The above shape functions hj�x� �j � 1; 2; . . . ;N � 2� have
the following form

F�x� � �ax2 � bx� c�lj�x� �j � 1; 2; . . . ;N�
Thus

F�1��x� � �ax2 � bx� c�l�1�j �x� � �2ax� b�lj�x�
F�2��x� � �ax2 � bx� c�l�2�j �x�

� 2�2ax� b�l�1�j �x� � 2alj�x�
F�3��x� � �ax2 � bx� c�l�3�j �x�

� 3�2ax� b�l�2�j �x� � 6al
�1�
j �x�

F�4��x� � �ax2 � bx� c�l�4�j �x�
� 4�2ax� b�l�3�j �x� � 12al

�2�
j �x�

�30�

In Eq. (30), if x is assigned a different xi�i � 1; 2; . . . ;N�,
the weighting coef®cients E

�r�
ij in Eq. (29) can be explicitly

obtained. Notice that l
�1�
j �xi�, l

�2�
j �xi�, l

�3�
j �xi�,

l
�4�
j �xi��i; j � 1; 2; . . . ;N� have been obtained in Eq. (5).

Because this governing equation is a fourth-order differ-
ential equation, only the 1±4th-order weighting coef®-
cients are needed.

Now the differential quadrature analog of the governing
Eq. (13) according to Eq. (15) isXN�2

j�1

E
�4�
ij Uj ÿ k

XN�2

j�1

E
�2�
ij Uj � 0

�i � 2; 3; . . . ;N ÿ 1� �31�
where k � P=EI. The differential quadrature analogs of the
boundary condition Eq. (14) are

wi � 0; w
�1�
i � 0; EI

XN�2

j�1

E
�2�
ij Uj � 0;

EI
XN�2

j�1

E
�3�
ij Uj � 0 �i � 1 or N� �32�

This work will give the normalized critical buckling load k
of the different boundary conditions such as pinned-pin-
ned, ®xed-®xed and ®xed-pinned ends in Table 2. For
different boundary conditions one has a proper combi-
nation of boundary Eq. (32). By rearranging Eqs. (31) and
(32), the assembled form, which is similar to the expres-
sions in reference (Bert and Malik 1996a), is

Sbb� � Sbd� �
Sdb� � Sdd� �

� �
Ubf g
Udf g

� �
ÿ k

0� � 0� �
Qdb� � Qdd� �

� �
Ubf g
Udf g

� �
� 0 �33�

where the subscripts b and d indicate the grid points used
for writing the quadrature analog of the boundary condi-
tions and the governing differential equation, respectively.

fUbg � U1;U2;UN�1;UN�2f g � w1;w
�1�
1 ;wN ;w

�1�
N

n o
:

fUdg � fU3;U4; . . . ;UNg � w2;w3; . . . ;wNÿ1f g:

By matrix substructuring of Eq. (33), one has the following
two equations

Sbb� � Ubf g � Sbd� � Udf g � 0 �34�
Sdb� � Ubf g � Sdd� � Udf g ÿ k Qdb� � Ubf g � Qdd� � Udf g� � � 0

�35�
In fact, Eq. (34) is a combination of boundary condition
equations, and it does not contain k. From Eq. (34) one
obtains:

Ubf g � ÿ Sbb� �ÿ1 Sbd� � Udf g �36�
Back-substituting Eq. (36) into Eq. (35), one gets

Sdd� � ÿ Sdb� � Sbb� �ÿ1 Sbd� �ÿ �
Udf g

ÿ k Qdd� � ÿ Qdb� � Sbb� �ÿ1 Sbd� �ÿ �
Udf g � 0 �37�

In short notation, one obtains

S� � ÿ k Q� �� � Udf g � 0 �38�
This is a generalized eigenvalue equation and can be re-
duced to standard eigenvalue equation. By the procedure
proposed here, one obtains the normalized critical buck-
ling axial load k of the beam with various boundary con-
ditions. The calculated k is compared with analytic results
in Table 2. Good agreements were obtained. When more
sampling points are employed, Table 2 shows that the
convergence rate is very rapid.

4
One-degree-of-freedom dynamics

4.1
The normalized dynamics equation
The simplest dynamics equation is the one-degree-of-
freedom vibration equation

m
d2y

dt2
� 2c

dy

dt
� ky � q sin pt� � �39�

where m is the mass, c the damping value, k the elastic
coef®cient. q and p are the exciting force's amplitude and
frequency, respectively, and d2y=dt2,dy=dt and y the ac-
celeration, velocity and displacement, respectively. One
usually uses the following standard form

d2y

dt2
� 2g

dy

dt
� �x2y � q sin pt� �

m
�40�

Table 2. Comparison of beam normalized critical buckling load
k under various boundary conditions

N Pinned±Pinned Fixed±Fixed Fixed±Pinned

Analytic 9.869604 39.47842 20.19073
6 9.867287 40.44472 20.17477
7 9.869683 39.37706 20.18902
8 9.869631 39.48238 20.19110
9 9.869604 39.47825 20.19075

10 9.869604 39.47845 20.19072
11 9.869604 39.47842 20.19073
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where g is the damping ratio and �x is the natural fre-
quency.

In the differential quadrature method, one usually em-
ploys the normalized coordinate [0,1]. Here again, these
authors also use the normalized coordinate [0,1]. Suppose
that s � t=T, T is the time length of solution domain. Using
this normalized time coordinate s � t=T, one obtains

d2y

ds2
� 2gT

dy

ds
� �xT� �2y � T2q sin pTs� �

m
�41�

where g � gT is the normalized damping ratio, x � �xT
the normalized natural frequency, p � pT the normalized
exciting force's frequency, and q � T2q=m the normalized
exciting force's amplitude. Therefore

d2y

ds2
� 2g

dy

ds
� x2y � q sin ps� � �42�

In this example the units are omitted or taken as inter-
national standard (SI) units. Besides the initial displace-
ment y0 � 1 and initial velocity y

�1�
0 � 1, one has the

following data

�x � 1; p � 2; q=m � 1; T � p=2; g � 0:05

The analytic solution of Eq. (42) is

y � eÿgs A sin x1s� B cos x1s� � � C cos ps� D sin ps

�43�
where

C � ÿ2pqg

x2 ÿ p2� �2�4p2g2
; D � q x2 ÿ p2� �

x2 ÿ p2� �2�4p2g2
;

B � y0 ÿ C; x1 �
����������������
x2 ÿ g2

p
; A � Ty

�1�
0 � gBÿ Dp

x1

4.2
Differential Quadrature expression
in this case
In this case, the time domain t � �0;T� is normalized to
s � �0; 1� and then divided into N ÿ 1 sections according
to Eq. (9). At the initial time point sN , one has two initial
conditions ± the initial displacement and initial velocity.
Thus at point sN one has two independent variables yN and
y
�1�
N . Therefore, nN � 2, n1 � n2 � � � � � nNÿ1 � 1. Now

Eq. (11) adopts the following expression:

y�r��si� �
XN

j�1

h
�r�
j0 �si�yj � h

�r�
N1�si�y�1�N �

XN�1

j�1

E
�r�
ij Uj

�44�
where

fE�r�ij g � fh�r�10 �si�; h�r�20 �si�; . . . ; h
�r�
N0�si�; h�r�N1�si�g

� fh�r�1 �si�; h�r�2 �si�; . . . ; h
�r�
N�1�si�g

fUjg � fy1; y2; . . . ; yN ; y
�1�
N g

� fU1;U2; . . . ;UN ;UN�1g:

4.3
Interpolation shape functions
According to the above-de®ned properties of the inter-
polation shape functions, hj�s��j � 1; 2; . . . ;N ÿ 1� should
have the following properties

hj�sj� � 1; h
�1�
j �sN� � 0; hj�si� � 0

�j � 1; 2; . . . ;N ÿ 1; i � 1; 2; . . . ;N; i 6� j� �45�
hN�s� and hN�1�s� should have the following properties,
respectively.

hN�sN� � 1; h
�1�
N �sN� � 0;

hN�si� � 0 �i � 1; 2; . . . ;N ÿ 1�
�46�

hN�1�sN� � 0; h
�1�
N�1�sN� � 1;

hN�1�si� � 0 �i � 1; 2; . . . ;N ÿ 1�
�47�

The interpolation shape functions
hj�s��j � 1; 2; . . . ;N � 1� can be obtained in an identical
manner as in the aforementioned beam problem. Here
their results are given and their properties can easily be
veri®ed. Notice that lj�s��j � 1; 2; . . . ;N� is de®ned in Eq.
(3).

hj�s� � sÿ sN

sj ÿ sN
lj�s� �j � 1; 2; . . . ;N ÿ 1� �48�

hN�s� � l
�1�
N sN� � sN ÿ s� � � 1
h i

lN�s� �49�
hN�1�s� � sÿ sN� �lN�s� �50�

4.4
Explicit weighting coefficients
From Eqs. (12), (44), (48), (49) and (50), one obtains

E
�r�
ij �

dr

dsr
hj�si� �i � 1; 2; . . . ;N;

j � 1; 2; . . . ;N � 1; r � 1; 2� �51�
The above shape functions hj�s��j � 1; 2; . . . ;N � 1� are of
the following form

F�s� � as� b� �lj�s� �j � 1; 2; . . . ;N�
Thus

F�1��s� � as� b� �l�1�j �s� � alj�s�
F�2��s� � as� b� �l�2�j �s� � 2al

�1�
j �s�

�52�

In Eq. (52), if s is assigned a different si�i � 1; 2; . . . ;N�,
the weighting coef®cients E

�r�
ij in Eq. (51) can be explicitly

obtained. Notice that l
�1�
j �si�, l

�2�
j �si� �i; j � 1; 2; . . . ;N�

have been obtained in Eq. (5). Because this governing
equation is a second-order differential equation, only the
®rst- and second-order weighting coef®cients are needed.

Now according to Eq. (44), the differential quadrature
analog of the governing Eq. (42) is
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XN�1

j�1

E
2� �

ij Uj � 2g
XN�1

j�1

E
1� �

ij Uj � x2yi � q sin psi� �

�i � 1; 2; . . . ;N ÿ 1� �53�
The initial conditions' quadrature analogs in the normal-
ized coordinate are

yN � y s � 0� � � y0; y
�1�
N �

dy

ds
s � 0� � � Ty

�1�
0 �54�

Matrix expression of Eq. (53) is

Sd� � Sb� �� � ydf g
ybf g

� �
� qdf g �55�

where

ybf g � yN ; y
1� �

N

n o
� y0;Ty

1� �
0

n o
;

ydf g � y1; y2; . . . ; yNÿ1f g � U1;U2; . . . ;UNÿ1f g
By matrix substructuring, Eq. (55) is rewritten as

Sd� � ydf g � qdf g ÿ Sb� � ybf g �56�
Therefore, every point's displacement can be obtained
from Eq. (56), and thus the velocity and acceleration can
be obtained from the Differential Quadrature Eq. (44). The
inverse node numbering's convenience is now seen. One
need not rearrange the matrix in Eq. (55), and its sub-
structuring is straightforward.

For the dynamics Eq. (42), many time steps are cal-
culated to check the stability of the proposed method.
The time step is Dt � T. Because one also divides the
time domain in Dt, one can call them the ®rst-order time
division and the second-order time division, respectively.
In the second-order division of the time domain Dt,
N � 8 is always used in Table 4. The calculated dis-
placements by the proposed Differential Quadrature and

the analytic results are compared in Tables 3 and 4. From
Table 3 one can see that the convergence is very fast,
when the second-order time division N is increased.
From Table 4, it's shown that the stability of this method
is also very good. Note that double precission Fortran is
employed in this work.

5
Conclusion
A new concept of the Differential Quadrature is pro-
posed here. The proposed method can be extended to
solve boundary-value and initial-value differential
equations with a linear or nonlinear nature. Besides
applying the boundary conditions exactly, the d-type
grid arrangement used in the classic DQM is exempt in
the newly proposed method. Any ®nite boundary dif-
ferential equation with ®nite function values, their de-
rivatives and their combinations within its domain can
be solved using the proposed method. The proposed
Differential Quadrature can be extended to multi-di-
mensional problems in the similar way as the DQM.
But the following main differences between the classic
DQM and the proposed method must be borne in
mind.

In the DQM one has only the function values as the
independent variables. Therefore at one point only one
differential quadrature analog can be implemented. But in
the newly proposed Differential Quadrature one has the
function values and their derivatives wherever necessary
as the independent variables. The resulting weighting co-
ef®cients of the DQM is a matrix of N � N . But the re-
sulting weighting coef®cients of the proposed Differential
Quadrature is a matrix of N �M. When M � N , the
proposed Differential Quadrature is reduced to the classic
DQM.

Table 3. Comparison of displacements between the calculated
results and analytic results in dynamics problems to check con-
vergence for the ®rst step

N si Analytic Relative error (%)

1 1.59965496 )0.720
2 1.64322220 )0.694

5 3 1.51950632 )0.681
4 1.19930126 )0.328

1 1.61144389 0.116e-1
2 1.64051469 0.114e-1
3 1.64587199 0.111e-1

7 4 1.53005910 0.885e-2
5 1.31944193 0.620e-2
6 1.09938225 0.262e-2

1 1.61125535 )0.995e-4
2 1.62979823 )0.984e-4
3 1.65470856 )0.965e-4

9 4 1.62896462 )0.885e-4
5 1.52992250 )0.795e-4
6 1.37690546 )0.577e-4
7 1.20325105 )0.340e-4
8 1.05785891 )0.135e-4

Table 4. Comparison of displacements between the calculated
results and analytic results in dynamics problems to check sta-
bility

Time step si Analytic Relative error (%)

1 0.042823156 0.157e-2
2 )0.00811146 )0.804e-2
3 )0.14379374 )0.257e-3

58 4 )0.28119012 )0.112e-3
5 )0.29884991 0.758e-5
6 )0.18738275 0.219e-3
7 )0.06143679 0.769e-3

1 )0.0221246 0.306e-2
2 )0.02955779 )0.219e-2
3 0.166658201 )0.223e-3

223 4 0.304214792 )0.882e-4
5 0.319368312 0.291e-4
6 0.203391381 0.243e-3
7 0.073272567 0.766e-3

1 0.02212457 0.306e-2
2 )0.02955780 )0.219e-2
3 )0.1666582 )0.223e-3

388 4 )0.30421477 )0.882e-4
5 )0.31936827 0.291e-4
6 )0.20339133 0.243e-4
7 )0.07327251 0.766e-3
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As examples, the Differential Quadrature expressions
and their explicit weighting coef®cients have been pre-
sented for the fourth-order boundary-value differential
equation and the second-order initial-value differential
equation. Good results were obtained in the two examples
as compared with the analytic results. Most importantly,
the explicit weighting coef®cients of the proposed Differ-
ential Quadrature for higher-order differential equations
with multiple given conditions can be obtained using this
paper's procedures. These highly accurate weighting co-
ef®cients may be determined for any number of arbitrarily
spaced sampling points.
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