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SUMMARY 
This paper presents the first endeavour to exploit a generalized differential quadrature method as an 
accurate, efficient and simple numerical technique for structural analysis. Firstly, drawbacks existing in the 
method of differential quadrature (DQ) are evaluated and discussed. Then, an improved and simpler 
generalized differential quadrature method (GDQ) is introduced to overcome the existing drawback and to 
simplify the procedure for determining the weighting coefficients. Subsequently, the generalized differential 
quadrature is systematically employed to solve problems in structural analysis. Numerical examples have 
shown the superb accuracy, efficiency, convenience and the great potential of this method. 

1 .  INTRODUCTION 

Numerical approximation methods for solving partial differential equations have been widely 
used in various engineering fields. Classical techniques such as finite element and finite difference 
methods are well developed and well known. These methods can provide very accurate results by 
using a large number of grid points. However, in a large number of cases, reasonably approximate 
solutions are desired at only a few specific points in the physical domain. In order to get results 
even at or around a point of interest with acceptable accuracy, conventional finite element and 
finite difference methods still require the use of a large number of grid points. Consequently, the 
requirement for computer capacity is often unnecessarily large in such cases. 

In seeking an alternate numerical method using fewer grid points to find results with acceptable 
accuracy, the method of differential quadrature (DQ) was introduced by Bellman et a!.'. The 
method of DQ is a global approximate method. This method is based on the ideas that the 
derivative of a function with respect to a co-ordinate direction can be expressed as a weighted 
linear sum of all the function values at all mesh points along that direction and that a continuous 
function can be approximated by a higher-order polynomial in the overall domain. The DQ 
method differs from the finite element method (FEM) in two aspects. Firstly, the FEM uses 
lower-order polynomials to approximate a function on a local element level, while the D Q  
method approximates a function on the global area using higher-order polynomials. Secondly, 
the DQ method directly approximates the derivatives of a function at a point, while the FEM 
approximates a function over a local element and the derivatives can then be derived from the 
approximate function. In this aspect, the D Q  method is more similar to the finite difference 
method (FDM). However, the FDM is also a local approximation method based on lower-order 
polynomial approximation. In fact, it can be shown that the FDM is just a special case of the DQ 
method where it is applied locally on the range [.xi- xi + l]. Owing to the higher-order 
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polynomial approximation in the D Q  method, it usually requires fewer grid points as compared 
to the FEM and FDM to achieve accurate results. However, the DQ method leads to non- 
symmetric and non-banded system matrices. The DQ method could be an alternative to the 
conventional numerical methods such as the FEM or FDM, especially when only solutions at 
a few specific points are required. Applications of this method to various problems showed that it 
has potential as an attractive approximation te~hnique.~-" 

However, there exists a major drawback in the originally proposed DQ. As known, the most 
important part of D Q  is to determine the weighting coefficients for discretization of any order 
partial derivative. There are two methods in use which were proposed by Bellman et aL2 to obtain 
the weighting coefficients. One method is to solve a set of linear algebraic equations which satisfy 
exactly the linear constrained relation for all polynomials of degree less than or equal to N - 1. 
This set of equations has a unique solution because the matrix elements are composed of 
a Vandermonde matrix. Unfortunately, when N is large Vandermonde matrix is ill-conditioned 
and the inversion of this matrix becomes difficult. Moreover, a set of N x N linear algebraic 
equations has to be solved for each order derivative. The other method is to compute the weighting 
coefficient by an algebraic formula, but with the co-ordinates of grid points chosen as the roots of 
an Nth order shifted Legendre polynomial. This means that if N is specified, the distribution of 
grid points is fixed even for different physical problems or different boundary conditions. This 
creates a major drawback and restricts the application of DQ, since some practical problems may 
need more grids near the boundary, while some others may not. Obviously, both of the methods 
originally proposed for determining the weighting coefficients required by the method of DQ 
have a major drawback. In order to overcome these drawbacks, Shu and Richard presented 
a generalized differential quadrature (GDQ) and applied it to solve some fluid dynamics 
equations.' ' 9  l 2  Preliminary results have shown that the method is very efficient and convenient. 

This paper is to explore the potential of the GDQ method as an accurate, efficient and simple 
numerical method for structural analysis. The drawbacks existing in the original D Q  method are 
first discussed and quantified in relation to its application to structural analysis. Then, the GDQ 
method is introduced. The GDQ has overcome the possible singularity problem of the original 
DQ in obtaining the weighting coefficients. Furthermore, in GDQ, the weighting coefficients for 
the first derivative and for the higher-order derivatives are given by a simple algebraic expression 
and a recurrence relation, respectively, and still with arbitrary choice of grid points. GDQ is 
finally applied to solve some practical problems in structural analysis. The ease of use and the 
accuracy of the GDQ are demonstrated through the numerical examples. 

2. THE ORIGINAL DQ 

The method of DQ is based on the idea that the partial derivative of a function with respect to 
a space variable at a given discrete point can be expressed as a weighted linear sum of the function 
values at all discrete points in the domain of that variable. 

Let us take the first derivative of a one-dimensional (1-D) function u(x,  t )  as an example, the 
higher-order partial derivatives will have essentially same formation. A D Q  approximation of the 
first derivative of the function u ( x ,  t )  at the ith discrete point on a grid is given by 

N 

u,(xi ,  I) = 1 c ! f ' u ( x j ,  t )  for i = I, 2 , .  . . , N (1) 

where u x ( x i ,  t )  is the first derivative of u(x ,  t )  with respect to x at xi, N is the number of discrete 
grids. c:f) are the weighting coefficients for the first derivative approximation. 

j =  1 
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As known, the most important part of the DQ method is to determine the weighting 
coefficients c i j .  Two approaches have been used in the method of DQ. 

2.1. Approach I 

The first one is to let equation (1) be exact for all polynomials of degree less than or equal to 
( N  - l), g ( x )  = xk,  k = 0, 1, . . . , N - 1. Substituting this set of polynomials into equation (l), we 
have 

(2) 

Once the grids (i.e. x i )  are given, this relationship leads to a set of N x N linear algebraic 
equations. This set of equations has a unique solution since its matrix is of Vandermonde form. 
Unfortunately, it has been found that this set of equations become ill-conditioned and it is 
difficult to be solved when N is large. 

In order to quantify this singularity, weighting coefficients have been calculated for equally 
spaced grids based on equation ( 2 )  for various number of grid points. From the computation, it is 
found that the maximum number of grid points is 22. Once the grid number is greater than 22,  the 
set of the linear algebraic equations become singular and cannot be solved. The computed 
weighting coefficients are also compared with the accurate coefficients obtained from the 
generalized DQ method to be introduced later, it is found that the results from equation (2) have 
some errors when grid number is more than 20. Therefore, the maximum number of grid points is 
practically 2 0  for equally spaced grids if this method is used for determining the weighting 
coefficients. In addition, we have to solve a set of N x N linear equations for every each order of 
derivatives in the governing equations. 

N 1 cijxj” = k x f - ’  for k = 0,1,. . . , N - 1 and i = 1,2, .  . . , N 
j =  1 

2,2. Approach 2 

The other approach to determine the weighting coefficients is similar to the first one with an 
exception that a different set of test functions g ( x )  is chosen for satisfying equation (1) exactly as 

L ~ ( X )  for j = 1,2, .  . . , N 
g(x) = (x - X j ) L L ( X j )  

(3) 

where N is the number of the grid points. L(x)  is the Nth order Legendre polynomial and L ’ ( x )  the 
first derivative of L ( x ) .  

By choosing xi to be the roots of the shifted Legendre polynomial and substituting equation (3) 
into equation (l), Bellman et a1.’ obtained a direct simple algebraic expression for the weighting 
coefficients c: ; ) ,  

1 - 2xi 
2 X i ( X i  - 1) 

c!?) = f o r i = j  

f o r i , j = 1 , 2  , . . . ,  N .  
It is obvious that once the number of grids N is specified, the roots of the shifted Legendre 

polynomial are given, thus the distribution of the grid points is fixed no matter what physical 
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problems are considered. This imposes a major restriction on the applications of this method to 
problems in structural analysis, since all sorts of boundary conditions could appear and different 
mesh grids may be needed for different boundary conditions and different structure geometry in 
practice. 

From the above discussion, some deficiencies are found in the originally proposed DQ. These 
deficiencies impose some restrictions on this method to structural analysis problems. This is 
probably one of the main reasons that the method of DQ is not widely used in structural analysis. 
In order to overcome such deficiencies, a GDQ will be introduced and applied to solve some 
problems in structural analysis. The ease of use and the accuracy of the GDQ will be demon- 
strated through the numerical examples. 

3. GENERALIZED DIFFERENTIAL QUADRATURE 

As described above, two approaches have been proposed for determining the weighting coeffi- 
cients by previous researchers. Both of them have some drawback. The first one restricts small 
number of the grids to be meshed besides the need to solve sets of linear equations. The second 
limits the distribution of the grid points which is critical to structural analysis. To remedy these 
deficiencies, what we want is to find a good method to determine the weighting coefficients so that 
the method has no limitation on the choice of grid meshes and still gives a simple algebraic 
expression. Such a method was proposed by Shu and Richard' ' 9  l 2  in relation to solving some 
partial differential equations in fluid dynamics. 

In order to find a simple algebraic expression for calculating the weighting coefficients without 
restricting the choice of grid meshes, let us choose the Lagrange interpolated polynomial as the 
set of test functions g ( x )  instead of using the power polynomials or the Legendre polynomials: 

where 
N 

M ( x )  = n (X - X j )  
j =  1 

and M ( ' ) ( x )  is the first derivative of M ( x )  defined as, 

N 

M y x i )  = n ( X i  - X j )  
j =  1. j # i  

and N is the number of grid points. 
For simplicity, we set 

M ( x )  = N ( x ,  x i ) ( x  - x i )  i = 1,2, .  

with 
N(Xi,  X j )  = M(1)(Xi)hi j  

where hi j  is the Kronecker operator. 
Thus we have: 

(7) 

M ( k ) ( ~ )  = N ( k ) ( ~ ,  x j ) ( x  - x i )  + kN(' - ' ) (x ,  x j )  for k = 1,2,. . . , N - 1 (9) 
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where M ( k ) ( ~ )  and ““(x ,  x j )  indicate the kth order derivative of M ( x )  and N ( x ,  xi). Substituting 
equation ( 5 )  into (1) yields: 

M “ ) ( x i )  
c!?’ = for i # j 

I J  ( X i  - Xj)M‘l’(Xj)  

for i= j  M ( 2 ’ ( ~ i )  
c p  = 

2M“’(xi)  

f o r i , j = 1 , 2  , . . . ,  N. 
Equation (10) is a simple expression for computing elf' without any restriction on the choice of 

the co-ordinates of grid points x i .  It is obvious that once the grids ( x i )  are given, M “ ’ ( x )  is very 
easy to be obtained from equation (7). Hence, cij) can be easily calculated for i # j. The 
calculation of cj,?’ is based on the calculation of the second derivative of M ( x )  which is more 
difficult to obtain. Instead of using equation (lOa), a more convenient relationship can be 
obtained and used for calculating clt’. It can be shown by using Taylor series expansion that the 
following relationship exists for ci;’: 

N 

2 c!f’ = 0 for i = 1,2,. . . , N (11) 
j =  1 

Thus, from equation ( 1  l ) ,  the coefficient cl!’ can be calculated from c:;’ (i # j). That is 
N 

ci,?’ = - clj” for i = 1,2, .  . . , N 
j =  1. j + i  

The weighting coefficients for the second and the higher-order derivatives can be similarly 
obtained. Let us consider the discretization of mth order derivative of u(x,  t), the following DQ 
approximation is assumed: 

N 
uim’(xi, i) = 1 c!j”’u(xj, I )  for i = 1,2,. . . , N 

j =  I 

Again, using Lagrange interpolated polynomials as test functions, an amazing recurrence 
relationship will be found for the rnth order weighting coefficients ciy): 

f o r i # j ,  m = 2 , 3  , . . . ,  N - 1 ,  i , j = 1 , 2  , . . . ,  N (14) 
c!y -  1’ 

c!”) = m C!m-”C.. - V 
xi - xj  1J ( 11 1.I 

where ciy’ is the weighting coefficients for the mth order derivative. 
The calculation of c::’ can be obtained from the relationship similar to equation (12): 

c!y’ 
N 

c!m) = - for i = 1,2, .  . . , N 
j =  1. j#i 

Therefore, equations (14) and (15) together with equations (10a) and (12) give a convenient and 
general form for determining the weighting coefficients for the first through ( N  - 1)th order 
derivatives. There are no restrictions on the co-ordinates of the chosen grid points. There is no 
need to solve for the weighting coefficients from a set of algebraic equations which could be 
ill-conditioned when the number of grids is large. Furthermore, this set of expressions for the 
determination of the weighting coefficients is so compact and simple and is very easy to be 
implemented in formulating and programming because of the recurrence feature. All these 
features give a great convenience to this GDQ for solving practical problems in structural 
analysis. Thus, it is of great potential to be used in structural analysis. 
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Extension of the method to two-dimensional (2-D) problems is straightforward. Each dimen- 
sion can be simply treated individually as a 1-D case. Assuming that there are N ,  grid points in 
the x-direction x 1  . . . , x N X ,  and N ,  grid points in the y-direction y l  . . . , y,,,. The nth order 
partial derivative of u(x, y )  with respect to x and the mth order partial derivative of u(x,  y )  with 
respect to y at xi, y j  can be discretized as 

N X  

u!)(xi, y j )  = C c~~’u(xk, y j ) ,  

$’(xi, y j )  = C c z ’ u ( x i ,  yk), 

n = 1 , .  . . , N ,  - 1 

m = 1,. . . , N, - 1 

( 164 

(16b) 

k =  1 

N Y  

k = l  

for i = 1,. . . , N,,  j = 1,. . . , N , .  
As usual, this GDQ method can be used in structural analysis for solving both ordinary 

differential equations and partial differential equations. The application of this method for static 
problems will lead to a set of algebraic equations with the function values at the grid points as 
unknowns. While the application to time-dependent dynamic problems will result in a set of 
ordinary differential equations with the time-dependent function values at the grid points as 
unknowns. The time-dependent ordinary differential equations can then be solved by existing 
integration scheme. Finally, once the function values at all grids are obtained, it is very easy to 
determine the function values in the overall domain in terms of polynomial approximation, that is 

where ri(x) and s j ( y )  are the Lagrange interpolated polynomials along the x-  and y-direction, 
respectively. 

4. APPLICATION OF GDQ TO STRUCTURAL ANALYSIS 

The method of GDQ is used for analysing some static structural problems. The first three cases 
are for determining the static deflection behaviours of beams, circular plates and rectangular 
plates, respectively. The fourth and fifth cases are for the analysis of buckling behaviours of 
columns and rectangular plates under various boundary conditions. The formulations and 
programming are shown to be very straightforward and simple. The boundary conditions are 
easy to be implemented. 

4.1. Static deflection of a beam under distributed load 

The governing equation of a Bernoulli-Euler beam in bending is given by 

d4w 
dx EI 4 + f ( x )  = 0, 0 < x < L 

where EI is the beam’s flexural rigidity, f (x) is the external distributed load, L is the length of the 
beam. 

Normalizing the equation, we have 

-+F(x )=O,  o < x <  1 
d4 W 
dX4 

where X = x / L ,  W = w/a, a = foL/EI, F(x) = f (x)/ fo. 
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Figure 1. Grid and deflection of a slender beam 

Assuming the beam is fixed at the left end and simply supported at the right end, the boundary 
conditions are 

d2 W 
dX2 

W = -  = O  a t X = 1  

Giving the number of grid points N (Figure 1) and applying the GDQ approximation to 
equation (19) at each discrete point on the grid, we have 

N 

1 ~14'4 = - F(XJ for i = 1,2, .  . . , N 
j =  1 

and boundary conditions: 

The set of equations (21) and (22) is redundant because there are four boundary conditions (22) 
plus N equations in (21). In order to eliminate this redundancy, we can simply drop the equations 
for i = 1, 2,(N - 1) and N in (21). Thus. 

N c c$' wj = - F(XJ for i = 3,4,. . . , (N - 2) (23) 
j =  1 

The combination of (23 )  and the boundary conditions (22) gives N equations with N unknown 
function values W , ,  W,, . . . , W,. The deflection of the beam under a given distributed loadf(x) 
can be obtained by solving this set of algebraic equations. It is worth pointing out that the 
treatment of boundary conditions here is different from that applied in solutions to structural 
problems using the original differential quadrature method." This treatment is much simpler and 
easier to be implemented in programming. 

Considering an uniform load with valuef(x) =fo, then F ( X )  = 1. The deflections of the beam 
at various points are presented in Table I together with the exact solutions. The exact solution of 
this problem is W ( X )  = & X 2  ( 5 X  - 2 X 2  - 3).  As can be seen, the numerical results are very 
accurate even using five grid points, i.e. N = 5.  Up to eight digits accuracy can be achieved by 
using only five points. Furthermore, the formulation and programming are very simple and 
straightforward. The computational time is small because of the very small size of the resulting 
algebraic equation set (five simultaneous linear algebraic equations). 
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Table I. Deflection of a beam under uniformly distrib- 
uted load 

~~ ~ 

X W (exact) W (GDQ, N = 5) 

0.0 0.0 0.0 
0.25 - 0.24414063 x - 0.24414063 x 
05 - 0.52083333 x - 0.52083333 x 
075 - 0.43945313 x - 0.43945313 x 
1 .o 0.0 0.0 

4.2. Defection of a thin circular plate 

equation is given as 
For a thin circular plate of uniform thickness under a general axisymmetric load, the governing 

d4w 2d3w 1 d2w 1 dw p(r )  -+ + --=- 
dr4 r dr3 r2 dr2 r3 dr D 

where D is the flexural rigidity, p is the normal pressure on the plate, r is the radial position and 
w the normal deflection of the plate. 

Upon normalization of (24), we have 

d4W 2 d 3 W  1 d2W 1 d W  p+-7---+--=1 
dP4 P dP PZ dP2 P3 dP 

where p = r/a, W = w/u, u = pa4/D and a is the radius of the plate. 
The regularity condition at the centre of the plate is 

dW 
- - = O  a t p = O  
dP 

The regularity condition is necessary to assure that the plate slope is zero at the origin to avoid 
a singularity at this location. 

The boundary condition for a simply supported outside edge are 

w=o, D ( - + -  = O  a t p = l  
d 2 W  v d w )  P dP 

Applying the GDQ approximation to (25) at each discrete point on the grid, we have 

N 2 N  l N  l N  1 c!;’ wj + - c d3’ 11 W. I - - 2 1 c:;’ wj + c cif’ wj = 1 for i = 2,3, . . . , N - 2 
j =  1 P i j = 1  Pi j = 1  Pi j = 1  

and applying the GDQ approximation to the boundary conditions: 
N 

1 cif’ wj = 0, WN = 0 
j =  1 

N V N  c c?; wj + - c;; wj = 0 
j =  1 P j = 1  
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Figure 2. Grid and deflection of a circular plate 

Table 11. Deflection of a circular plate under uni- 
formly distributed load using 5 grid points 

P W (exact) W (GDQ, N = 5) 

0.0 0.65624997 x l o - '  0.65625 x lo-'  
025 0.60607907 x lo-' 0.60607910 x lo - '  
0.5 046289060 x l o - '  0.46289063 x lo-' 
0.75 0.24865721 x l o - '  0.24865723 x l o - '  
1.0 0.0 0.0 

Table 111. Deflection of a circular plate under uni- 
formly distributed load using 7 grid points 

W (exact) 

0.65624997 x lo-' 
063380109 x lo-' 
0.56790121 x lo - '  
0.46289060 x lo - '  
0.32600307 x l o - '  
0.16736592 x l o - '  
0.0 

W (GDQ, N = 7) 

0.65625000 x lo-' 
0.63380112 x l o - '  
0.56790123 x lo-' 
0.46289062 x lo-'  
0.32600309 x lo-'  
016736593 x l o - '  
0.0 

Again, we only keep the discretized equations for i = 2 to ( N  - 2) in (28) because there is one 
boundary condition at p = 0 and there are two boundary conditions at p = 1. 

Solving the set of combined algebraic equations (28) and (29), the normal deflections W at 
various grid points can be obtained. Results are obtained by using various number of grid points 
at v = 0-25. Tables I1 and I11 present the results together with the exact analytical solutions for 
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fY 

Figure 3. Grid of a rectangular plate 

comparison. The exact solution can be found from the literature (e.g. Reference 13) as 

2(3 + v )  

As observed, the agreement is excellent by using only a few grid points. Up to six-digits accuracy 
has been achieved by using only five points and seven-digits accuracy achieved using seven points. 
The convergence of this method is very good. Again, the size of the equations and the computa- 
tional time are very small. 

4.3. Deflection 0s rectangular plates 

The governing equation for a thin rectangular plate is given as 

a4W a4w a4w 

a X 4  a X 2 a y 2  ay  -+2- + 7 = p/D 

where D is the flexural rigidity of the plate and p is the distributed load. 
Normalizing equation (30), it becomes 

a 4  w a4 w +p4--- a4W pa4 
ax2 a y2 a y 4 -  D ax" + w2 

where /3 = a / b ,  X = x/a, Y = y / b ,  a is the length of the plate and b the width of the plate. 

have 
Applying the GDQ approximation (16) to (31) at each discrete point on the grid (Figure 3), we 

i =  1,2 , . . . ,  N , , j =  1,2 , . . . ,  N ,  (32) 
where N,, N, are the number of grid points along the X-direction and the Y-direction, respect- 
ively (Figure 3). 

The boundary conditions for a plate clamped on all four edges are 

W(X,  0)  = W(X,  1) = W(0, Y )  = W(1, Y )  = 0 ( 3 3 4  

- aw (X, 0)  = - ( X ,  aw 1) = -(O, aw Y) = -(I, aw Y )  = 0 
a y  a Y  ax ax 
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Applying G D Q  (16) to the boundary conditions (33) 

k = l  k = l  k =  1 k = l  

f o r i =  1,2 , . . . ,  N , a n d j = 2 , 3  , . . . ,  N,-1. 
In order to impose the boundary conditions to equation (32), firstly, equation (34) is used to 

solve for W I j ,  WNjr el,  w.N (for i = 1,2,. . . , N, and j = 2.3,. . . , N, - 1) in terms of the 
variables Wij (for i = 3,. . . , N ,  - 2 and j = 3,. . . , N, - 2). The expressions for W l j ,  WNj,  W i l ,  
KN in terms of the variables &.j (for i = 3,. . . , N ,  - 2 and j = 3, . . . , N ,  - 2) are then replaced 
into equation (32) to eliminate the variables W l j ,  W N j ,  W i l l  WiN,  and only the discretized 
equations at the points i = 3,.  . . , N ,  - 2, and j = 3,. . . , N, - 2 from (32) are to be used, 
Finally, the remaining set of algebraic equations can be solved to obtain the deflection of 
a rectangular plate. Consequently, the bending moments can also be obtained. It is worth 
pointing out that the coefficient matrix of the resulting set of equations is non-symmetric and 
non- banded. 

For a plate with all four edges simply supported, the boundary conditions are 

W(X,O) = W ( X ,  1) = W(0, Y )  = W(1, Y )  = 0 (354 

azw a2w azw a 2  w 
- (X, 0) = -(X, 1) = F ( 0 ,  Y )  = -(1, Y )  = 0 a y2 a y2 ax i3X2 

Applying GDQ (16) to the boundary conditions (35) 

wlj = WNj = w.1 = T'N = 0 

c r i  wi, = 0 

(364 

(36b) 
N x  NX NY NY c w kj - - c c t i  wkj = c c\i' w k  = 

k =  1 k =  1 k =  1 k =  1 

for i = 1,2,. . . , N, and j = 2,3, .  . . , N, - 1. 
Similarly, the deflection of a simply supported rectangular plate can be solved by combining 

the boundary conditions (36) with equation (32). 
Deflections and bending moments obtained for square plates are presented in Table IV 

together with the exact solutions and finite element solutions available for comparison using 
rectangular plate element. The finite element solutions obtained by using 12 x 12 and 16 x 16 
rectangular plate meshes" are presented in the table. For the 12 x 12 mesh, the dimension of the 

Table IV. Deflection and bending moments of square plates under uniformly distributed 
load 

Values at Error Error FEM1* FEM'* 
x = y = a12 Exact 7 x 7  (%) 9 x 9  (%) (12x12) (16x16) 

W(C-C-C-C) 0.00126 0'00123 2.3 0.00126 0.0 OQ0128 000127 
M ,  (C-C-C-C) 0.0231 0.0226 2.2 0.0229 0.87 - - 

M y  (C-C-C-C) 0.0231 0.0226 2.2 0.0229 0.87 ~ 
- 

W(S-S-S-S) 0.00406 0'00396 2.5 0.00406 0 0  OOO405 OW406 
M ,  (S-S-S-S) 0.0479 0.0469 2.1 00478 0.21 - 

M y  (S-S-S-S)  0.0479 0.0469 2.1 0.0478 021 - - 

~ 
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resulting system matrix is 363 x 363 for plates with four-edges clamped or 407 x 407 for plates 
with four-edges simply supported. For the 16 x 16 mesh, the dimension of the resulting system 
matrix is 588 x 588 for plates with four-edges clamped or 648 x 648 for plates with four-edges 
simply supported. In the analyses using the GDQ, two different sets of boundary conditions are 
considered. The first case is a square plate with all four-edges clamped (C-C-C-C), while the 
second case is a square plate with all four-edges simply supported (S-S-S-S). Results are obtained 
for each case using various number of grid points. It is observed that the convergence of the 
method is very good. Reasonably accurate results can be achieved by using only 7 x 7 grid points, 
for which only nine simultaneously algebraic equations need to be solved. Thus, the computa- 
tional time required is tiny. Very accurate solutions can be produced with 9 x 9 grid points and 
for this we have to solve only a set of 25 algebraic equations. All these computations were carried 
out on an IBM compatible PC-486. For all of the cases, the computational time is less than 1 s. 

The deflections and bending moments for rectangular plates with various width/length ratios 
are presented in Table V for plates with all edges clamped and in Table VI for plates with all edges 
simply supported, respectively. Exact results are also given together in the tables for comparison. 
The GDQ results are obtained using 9 x 9 grid points. As observed, both deflections and bending 
moments are in very good agreement with the exact solutions. Again, the computational time on 
an IBM compatible PC-486 is less than 1 s for all the cases. 

Table V. Deflection and bending moments of rectangular plates under uniformly distributed 
load (C-C-C-C) 

Values at 
x = a/2, y = h 

W (exact) 
W G D Q )  
Error (YO) 
M ,  (exact) 
M x  G D Q )  
Error (YO) 
M y  (exact) 
My G D Q )  
Error (%) 

-~ 
b/a = 1.0 

0.00 126 
0.00126 
0.00 
0.023 1 
0.0229 
087 
0.023 1 
0.0229 
0.87 

- _ _  
bla = 1.2 

090172 
0.00 173 
0.58 
0.0299 
0.0300 
0.33 
0.0228 
0.0229 
0.44 

~~ 

bla = 1.4 
~ 

000207 
OQ0207 
0.00 
0.0349 
0.0350 
0.29 
0.02 12 
00213 
0.4 7 

b/a = 1.6 

0.00230 
0.00230 
0.00 
0.0381 
0.0382 
026 
0.0193 
0.0193 
0.00 

~~ 

b/a = 1.8 

0.00245 
0.00244 
0.4 1 
0.040 1 
0.040 1 
0.00 
0.0 174 
0.0 174 
0.00 

bla = 2.0 

0.00254 
0.00253 
0.39 
0.04 12 
0.041 1 
0.24 
0.01 58 
0.0 159 
0.63 

____ 

Table VI. Deflection and bending moments of rectangular plates under uniformly distributed 
load (S-S-S-S) 

Values at 
x = a/2, y = b/2 bla = 1.0 b/a = 1.2 

W (exact) 
W G D Q )  
Error (YO) 
M ,  (exact) 
M ,  G D Q )  
Error (%) 
M y  (exact) 
My (GDQ) 
Error (YO) 

0.00406 
OW406 
000 
00479 
0.0478 
0.2 1 
0.0479 
0,0478 
0.21 

0.00564 
0.00564 
0.00 
0.0627 
0.0626 
0.16 
0.050 1 
0.0500 
0.2 

bla = 1.4 

090705 
0.00707 
0.28 
0.0755 
0.0754 
0.13 
0.0502 
0.0502 
0.00 

bla = 1.6 

0.00830 
0.00828 
0.24 
00862 
00860 
0.23 
0.0492 
0.0493 
0.2 

b/a = 1.8 

0.0093 1 
0.00928 
0.32 
0.0948 
0.0945 
0.32 
0.0479 
0.0479 
0.00 

b/a = 2.0 

00101 
0.0101 
000 
00102 
00101 
098 
0.0464 
0.0464 
0.00 

~~ 
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4.4 .  Column buckling 

equation can be written as 
For the buckling behaviour of a slender elastic column, the normalized governing differential 

d2 W d2 W 
(37) 

where X and W are defined in the same way as those in equation (19). 

equations are obtained as 
Applying the GDQ to equation (37) at each discrete point on the grid, a set of algebraic 

for i = 1,2,. . . , N, where I can be a given function of X. 
Equation (38) can be written in a matrix form 

[A1 I W )  = X B l  I w> (39) 
where A = - P L ~ I E I , , ,  { W }  = [w, ,  ~ 2 , .  . . , WNIT. 

appropriate boundary conditions. 

prismatic columns. Using the GDQ, boundary conditions for each case can be written as 

The buckling load can be obtained by solving the above eigenvalue problem together with 

Three different sets of boundary conditions are considered for both prismatic and non- 

Left pinned-right pinned 

w, = 0, 

WN = 0, 

N 

N 

c;; wj = 0 
j =  1 

Left fixed-right fixed 

Left fixed-right pinned 

N c cy; wj = 0 
j =  1 

N 

N 

x=l ” 
I I I 

1 2 3 4 5 

Figure 4. Grid and buckling loads of a column 
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The buckling loads of the columns under different boundary conditions are listed in Tables VII 
and VIII. Both prismatic and non-prismatic columns are considered. The exact analytical results 
are also given wherever available. Calculations are performed for various number of grid points. 
As observed, the convergence of the solution using GDQ is excellent. Comparison of the present 
results with the exact ones shows that the GDQ is a very accurate numerical technique. When 
7 grid points are used, we only have to solve an eigenvalue problem of a 3 x 3 matrix. For 9 and 11 
grid points, the eigenvalue problems of 5 x 5 and 7 x 7 matrices have to be solved, respectively. 
The computational time for all these cases on a PC-486 is less than 1 s. 

4.5. Buckling of rectangular plates 

given as 
The governing equation for the buckling of a thin rectangular plate under uniaxial load N ,  is 

a4w ii4w a Z w  

ax ax2 ay2 ay4 a x 2  
D - 7 + 2 D -  + D - = N  - 

where D is the flexural rigidity of the plate. 
Normalizing equation (43), it becomes 

a4 w a4 w a4 w N,a2 a2 w 
- + 2 p 2  ax4 ax2 a y2 

(43) 

(44) 

where p = a/b,  X = x / a ,  Y = y / b ,  a is the length of the plate and b the width of the plate. 

have 
Applying the GDQ approximation (16) to (44) at each discrete point on the grid (Figure 3), we 

N X  NY N X  NY 

1 c!:) wkj + 2P2 c C F  clrf’wk, + B4 c cg) &, = ~ 

k =  I m = l  k = l  k =  I k = l  

i =  1,2, .  . . , N x , j =  1,2, .  . . , N ,  (45) 

Table VII. Buckling loads of prismatic columns 

Boundary Exact FEM GDQ ( N  = 7) GDQ ( N  = 9) GDQ ( N  = 11) 

Pin-Pin 9.8696 9.9438 100607 18 9.864 1905 9.8 6970 1 7 
Fix-Fix 39.4784 39.9730 49.090909 38.847825 39.516455 
Fix-Pin 20.1421 20.4972 19.778356 20.25463 1 20.186532 

Table VIII. Buckling loads of non-prismatic columns 

Boundary I function Reference Reference GDQ ( N  = 7) GDQ ( N  = 9) GDQ ( N  = 11) 

Pin-Pin (1 + X )  15.31 [15] 14.3 [16] 14.477901 14.517996 14.5 1 1296 
(1 + X ) ’  20.7923 [17] 27.455 [15] 19.709372 20.809884 20.804739 

Fix-Fix (1 + X )  - - 56.446 1 5 1 57.763035 57-3453 29 
(1 + xy - - 84.8171 23 82.104358 

Fix--Pin (1 + X) - - 40.376280 29.141 565 29440638 
(1 + X I 2  

70.020396 

49.294970 43.797995 4 1.967885 - - 



STRUCTURAL PROBLEMS 1895 

where N,, N, are the number of grid points along the X-direction and the Y-direction, respective- 
ly  (Figure 3). 

The boundary conditions for a plate clamped on all four edges (C-C-C-C) are 

W ( X ,  0) = W(X, 1) = W(0, Y) = W(1, Y )  = 0 (464 
-(X, aw 0) = - ( X ,  aw 1) = -(O, aw Y )  = -(I* aw Y) = 0 
a Y  a y  ax ax 

Applying GDQ (16) to the boundary conditions (46) 

w1j = WNj = K.1 = K'N = 0 

1 c\\) wkj = 1 c(hk q j  = c cyi  Kk = c c;; wk = 0 

(474 

(47b) 
NX N x  N Y  N Y  

k - 1  k = l  k =  1 k = l  

f o r i = 1 , 2  , . . . ,  N , a n d j = 2 , 3  , . . . ,  N,-1. 
For a plate with all four-edges simply supported (S-S-S-S), the boundary conditions are 

W ( X ,  0)  = W ( X ,  1) = W(0, Y )  = W(1, Y )  = 0 (484 

a 2  w a2w a2w a 2  w 
- ( X ,  0) = r ' ( X ,  1) = 2 (0, Y )  = - (1, y) = 0 

ax2 a Y2 ax 
Applying GDQ (16) to the boundary conditions (48) 

k =  1 k = l  k =  1 k = l  

f o r i = 1 , 2  , . . . ,  N , a n d j = 2 , 3  , . . . ,  N,-1. 

Similarly, the buckling loads of rectangular plates can be obtained by solving the eigenvalue 
problem in equation (45) together with appropriate boundary conditions in (47) or (49). 

Buckling loads obtained for square plates are presented in Table IX together with the exact 
solutions. Both set of boundary conditions, four-edges clamped and four-edges simply supported, 
are considered. Results are obtained using various number of grid points. Good convergence of 
the solutions are observed from the table. For the simply supported plate, 7 x 7 grid points can 
produce quite accurate results. The results are obtained by solving an eigenvalue problem of 
a 9 x 9 matrix, for which the computational time on a PC-486 is less than 1 s. For the clamped 
plate, good results can be achieved by using 9 x 9 grid points. This requires a solution of an 
eigenvalue problem of a 25 x 25 matrix. The computational time on a PC-486 is less than 2.5 s for 
this case. 

Table IX. Buckling loads of square plates 

Error Error Error 
Boundary Exact 7 x 7  (Yo) 9 x 9  (Yo) 11 x 11 (Yo) 

S-S-S-S 39.4784 39.8652 0.98 394678 0027 39.4786 000 
C-C-CX 99.3869 94.2733 5.1 97.1653 2.2 9943377 045 
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5. CONCLUSIONS 

Deficiencies existing in the method of DQ are evaluated and discussed. An improved and 
Generalized DQ method which overcomes the drawback is then introduced and applied to solve 
some problems in structural analysis. GDQ presents a very simple algebraic formula to determine 
the weighting coefficients required by the DQ approximation without restricting the choice of 
mesh grids. Applications of GDQ to some structural problems have shown that accurate results 
can be obtained using considerably few grid points, and require much less storage and computa- 
tional effort. The solution procedures and the programming are much simpler and easier. And 
boundary conditions are easy to be incorporated in the GDQ. The superb accuracy, efficiency 
and convenience of this method have shown the great potential of this method for being used in 
structural analysis. 
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