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Imposition of boundary conditions by modifying the weighting
coe�cient matrices in the di�erential quadrature method

T. C. Fung∗;†

School of Civil and Environmental Engineering; Nanyang Technological University; Singapore

SUMMARY

One of the important issues in the implementation of the di�erential quadrature method is the imposition
of the given boundary conditions. There may be multiple boundary conditions involving higher-order
derivatives at the boundary points. The boundary conditions can be imposed by modifying the weight-
ing coe�cient matrices directly. However, the existing method is not robust and is known to have
many limitations. In this paper, a systematic procedure is proposed to construct the modi�ed weighting
coe�cient matrices to overcome these limitations. The given boundary conditions are imposed exactly.
Furthermore, it is found that the numerical results depend only on those sampling grid points where
the di�erential quadrature analogous equations of the governing di�erential equations are established.
The other sampling grid points with no associated boundary conditions are not essential. Copyright ?
2002 John Wiley & Sons, Ltd.

KEY WORDS: higher-order di�erential equations; collocation method; modi�ed weighting coe�cient
matrix; multiple boundary conditions; di�erential quadrature method

1. INTRODUCTION

The di�erential quadrature method (DQM) has been successfully used to tackle various initial
and=or boundary value problems of physical and engineering science e�ciently and accurately
[1–4]. However, the imposition of the given initial=boundary conditions can be di�cult when
more than one boundary conditions are speci�ed at a boundary point [1]. This situation is
very commonly found in structural mechanics problems [5–8]. Bert and Malik [1] mentioned
that this intriguing issue is not a straightforward matter and needs careful consideration.

1.1. The �-technique

Bert et al. [5] and Jang et al. [6] proposed a �-technique to impose the two given boundary
conditions at each boundary point for structural mechanics problems. The �-technique consists
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of placing a series of two grid points separated from each other by a small distance � near the
boundary edge. One of the boundary conditions is applied at the grid points located on the
boundary edge while the other is applied to the adjacent auxiliary �-grid points. It can be seen
that one boundary condition is exactly imposed while the other is approximately imposed only.

1.2. Modi�ed weighting coe�cient matrices

Wang and Bert [9], Wang et al. [10], and Malik and Bert [11] proposed several innovative
methods to incorporate the boundary conditions by modifying the weighting coe�cient matri-
ces for structural mechanics problems. Civan [12] also incorporated the boundary conditions
in the di�erential quadrature rule by replacing the derived di�erential quadrature rules by the
conditions given at the boundary points. Shu and Xue [13] applied the same technique to
impose the Neumann boundary conditions for incompressible Navier–Stokes equations. Malik
and Civan [2] also considered this technique in the context of convection–di�usion–reaction
problems. They all found that very accurate results could be obtained by the proposed tech-
niques. However, Shu and Du [14, 15] also reported that these techniques had some major
limitations and cannot be used to tackle general boundary conditions (for example, clamped
and free support conditions). In fact, all these techniques may not produce reliable results since
the interpolated numerical solutions may not satisfy the given boundary conditions exactly. In
this paper, another procedure to modify the weighting coe�cient matrices is proposed. The
interpolated numerical solutions would satisfy the boundary conditions exactly.

1.3. Modi�ed trial functions

Alternatively, the boundary conditions involving higher-order derivatives can also be imposed
exactly by modifying the trial functions to incorporate the degrees of freedom of the spec-
i�ed higher-order derivatives at the boundary [16–19], by using the di�erential quadrature
element method [18–23], or by using the quadrature element method [24–26]. Basically,
only Dirichlet-type and Neumann-type boundary conditions can be handled. The mixed-type
boundary conditions cannot be tackled directly in general.
In this paper, the present modi�ed weighting coe�cient matrices are found to be equivalent

to the weighting coe�cient matrices given by Chen et al. in Reference [16] for Dirichlet-type
and Neumann-type boundary conditions. However, the present procedure is computationally
more e�cient as no new trial functions satisfying the given boundary conditions have to
be derived. Besides, the present procedure is more general and can tackle mixed-type non-
homogenous boundary conditions directly.

1.4. Di�erential quadrature analogous equations of the boundary conditions

Another way to impose the boundary conditions is to apply the multiple boundary conditions
at the same boundary points as given and to establish the di�erential quadrature analogous
equations of the boundary conditions at the boundary points. It is di�erent from the �-technique
since the boundary conditions are not applied to the auxiliary �-grid points next to the bound-
ary points. To eliminate the extra equations, the di�erential quadrature analogous equations of
the governing di�erential equations at some selected sampling grid points are dropped. These
selected points are called auxiliary sampling grid points. This approach has been used exten-
sively by many researchers [7, 14, 15, 27–30]. It is found that this approach is a special case of
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the present algorithms when the same sampling grid points are used to establish the di�erential
quadrature analogous equations of the governing di�erential equations. In Reference [14], this
approach is viewed as substituting all the boundary conditions into the governing equations.
In the present approach, more general non-homogenous boundary conditions are considered.

1.5. Essential and auxiliary sampling grid points

From the present formulation, it is found that the numerical results are in fact independent
of the auxiliary sampling grid points. At these auxiliary sampling grid points, no di�erential
quadrature analogous equations of the governing di�erential equations are established. In other
words, the numerical results only depend on the essential sampling grid points where the dif-
ferential quadrature analogous equations of the governing di�erential equations are established.
Shu and Chen [31] studied the solution accuracy when di�erent sampling grid points were

discarded. They concluded that the interior points just adjacent to the boundary should be
discarded. In fact, they were studying the accuracy of the numerical solutions given by the
remaining sampling grid points since all the sampling grid points (including the discarded
sampling grid points) were Chebyshev–Gauss–Lobatto points. In this paper, it is advocated
that only the remaining essential sampling grid points have to be the Chebyshev–Gauss–
Lobatto-like points.
It is also noted that sometimes, after the boundary points and the auxiliary sampling grid

points are discarded, the numerical solutions obtained by using the remaining sampling grid
points to establish the di�erential quadrature analogous equations of the governing di�erential
equations are not very accurate. It was suggested that the remaining sampling grid points
should be stretched outward to give a better coverage [15, 31, 32]. Indeed, better numerical
results were obtained. On the other hand, it was also reported that the numerical results could
be sensitive to the distribution of the sampling grid points [33]. In the present formulation,
this procedure is not necessary as the remaining essential sampling grid points are speci�ed
directly initially.
The manuscript is arranged as follows. The di�erential quadrature method is brie�y re-

viewed in Section 2. In Section 3, the existing methods to impose the boundary conditions by
modifying the weighting coe�cient matrices are brie�y discussed. In Section 4, the proposed
method to impose the boundary conditions in the weighting coe�cient matrices is presented.
It is shown that the modi�ed weighting coe�cient matrices can be computed easily even
for non-homogenous mixed-type boundary conditions involving higher-order derivatives. The
roles of the essential and auxiliary sampling grid points are discussed in Section 5. The mod-
i�ed weighting coe�cient matrices for second- and fourth-order equations are considered in
Sections 6 and 7. Numerical examples and further discussions are given in Section 8. Con-
clusions are then given in Section 9.

2. DIFFERENTIAL QUADRATURE METHOD

In the di�erential quadrature method, the values of the derivatives at each sampling grid
point are expressed as weighted linear sums of the function values at all sampling grid
points within the domain under consideration. In other words, the rth derivative of the
function �(x) at a sampling grid point x= xi is related to the function value �k =�(xk)
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at x= xk by

dr

dxr
�(x)

∣∣∣∣
x= xi

=
n∑

k = 1
A(r)ik �(xk) for i=1; 2; : : : ; n (1)

where n is the total number of sampling grid points under consideration. A(r)ik can be collec-
tively written in a matrix form as

[A(r)]=




A(r)11 A(r)12 · · · A(r)1n
A(r)21 A(r)22 · · · A(r)2n
...

...
...

A(r)n1 A(r)n2 · · · A(r)nn


 (2)

and [A(r)] is called the weighting coe�cient matrix. The evaluation of the weighting coe�cient
matrix has been discussed extensively [1].
Consider a linear mth order ordinary di�erential equation in the form

�0
dmy
dxm

+ �1
dm−1y
dxm−1

+ · · ·+ �my=f(x) for 0¡x¡L and �0 �=0 (3)

Using the relation in Equation (1), the di�erential quadrature analogous equations of the
governing di�erential equations at the n sampling grid points x1; x2; : : : ; xn can be written as

(�0[A(m)] + �1[A(m−1)] + · · ·+ �m−1[A(1)] + �m[A(0)]){Y}= {f} (4)

where

[A(0)]= [I]; {Y}=



y1
...

yn


 ; {f}=



f(x1)
...

f(xn)


 (5)

and y1; y2; : : : ; yn are the approximate values of y(x) at x1; x2; : : : ; xn, respectively.
Of course, Equation (4) cannot be solved until the boundary conditions are imposed

properly. For an mth order equation, there should be m boundary conditions. The solution
procedure can be implemented in several ways:

(i) Select n − m equations from Equation (4) and construct the m di�erential quadra-
ture analogous equations of the boundary conditions at the boundary points. The n
unknowns y1; y2; : : : ; yn are then solved from the combined n equations. This method
is very commonly used [7, 14, 15, 27–30].

(ii) Select n − m equations from Equation (4) and construct the m di�erential quadrature
analogous equations of the boundary conditions at the boundary and adjacent points to
solve for y1; y2; : : : ; yn [5, 6]. This is the �-technique and the boundary conditions are
only satis�ed approximately. This method is also very commonly used [33–39].

(iii) Construct the weighting coe�cient matrices [A(r)] from the trial functions that sat-
isfy the given boundary conditions exactly [16–26]. This method is equivalent to the
collocation method.
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(iv) Modify the weighting coe�cient matrices [A(r)] to incorporate the given boundary
conditions. The boundary conditions are satis�ed approximately by the interpolated
solutions [9–13].

(v) Modify the weighting coe�cient matrices [A(r)] to incorporate the given boundary
conditions. The boundary conditions are satis�ed exactly by the interpolated solutions
(the present procedure).

In Methods (ii) and (iv), the interpolated solutions satisfy the given boundary conditions
approximately only. It can be shown that Methods (i), (iii), and (v) are equivalent if the
same sampling grid points are used to establish the di�erential quadrature analogous equa-
tions of the governing di�erential equations. However, it is di�cult to construct the required
trial functions that satisfy the mixed type boundary conditions for Method (iii). For Method
(i), n unknowns are solved simultaneously while in Method (v), only n − m unknowns are
solved. The signi�cance of Method (v) is that, from the �nal forms of the modi�ed weight-
ing coe�cient matrices, it is realized that the numerical results are in fact independent of
the auxiliary sampling grid points. The selection of the essential and auxiliary sampling grid
points should be viewed under a di�erent perspective.

3. EXISTING APPROACHES TO MODIFY THE WEIGHTING
COEFFICIENT MATRICES

In Wang and Bert [9], and Malik and Bert [11], the boundary conditions are incorporated
by modifying the weighting coe�cient matrices. For a simply supported beam, the boundary
conditions at the two ends can be expressed as y(x1)=0, y′′(x1)=0, y(xn)=0 and y′′(xn)=0.
In Reference [9], to impose the boundary conditions in the weighting coe�cient matrices, all
the elements in the columns corresponding to x1 and xn in the weighting coe�cient matrix
[A(1)] are set to zero, i.e. [A(1)] is modi�ed to [Ã(1)] as

[Ã(1)]=




0 A(1)12 · · · A(1)1; n−1 0

0 A(1)22 · · · A(1)2; n−1 0

...
...

...
...

0 A(1)n2 · · · A(1)n; n−1 0




(6)

The weighting coe�cient matrices for the second derivative [Ã(2)] and the fourth derivative
[Ã(4)] are then obtained from

[Ã(2)]= [A(1)][Ã(1)] (7a)

and

[Ã(4)]= [Ã(2)][Ã(2)] (7b)

This procedure is applicable to the simply supported boundary condition only. A more
general discussion on the imposition of other types of boundary conditions was given in
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Reference [11]. Essentially, starting from [ �A(1)]= [A(1)], a new weighting coe�cient matrix
[Ã(r)] for the rth derivative with boundary conditions built-in is to be obtained from a derived
weighting coe�cient matrix [ �A(r)]. If a boundary condition is expressed in the form

dry
dxr

∣∣∣∣∣x=xj =
r−1∑
p=0
�p
dpy
dxp

∣∣∣∣∣
x=xj

where m− 1¿r¿1 (8)

then all the elements in [Ã(r)] and [ �A(r)] are basically the same (i.e. Ã(r)jk = �A(r)jk ) except all the
elements in the jth row. In particular, the kth element in the jth row is given by

Ã(r)jk =
r−1∑
p=0
�pÃ

(p)
jk (9)

where Ã(p)jk are elements in [Ã(p)] from the previously modi�ed weighting coe�cient matrices
with the appropriate boundary conditions imposed.
Once the modi�ed weighting coe�cient matrix [Ã(r)] is obtained, the weighting coe�cient

matrix for the (r + 1)th order derivative [ �A(r+1)] can be derived from

[ �A(r+1)]= [A(1)][Ã(r)] (10)

At this stage, additional boundary conditions involving the (r + 1)th order derivatives in the
form of Equation (8) can be imposed by using Equation (9) again. The process continues
until all the boundary conditions are imposed and the required modi�ed weighting coe�-
cient matrices [Ã(1)]; : : : ; [Ã(m)] are obtained. In other words, Equations (9) and (10) are used
alternatively as follows:

[A(1)]→ [Ã(1)]→ [ �A(2)]→ [Ã(2)]→ · · · [ �A(m)]→ [Ã(m)] (11)

The di�erential quadrature analogous equations of the governing di�erential equations can
then be established as Equation (4) with [A(r)] replaced by [Ã(r)]. All the boundary conditions
except the Dirichlet-type boundary conditions (i.e. y(xi)=�i) are imposed. Hence, before
Equation (4) is solved, the di�erential quadrature analogous equations corresponding to the
sampling grid points with Dirichlet-type boundary conditions are dropped and the unknowns
are replaced by the given values in the remaining equations.
Civan [12] has extended the procedure to incorporate non-homogenous boundary conditions

in Equation (8). Some implementation details can be found in Reference [12] and in the
numerical example in Section 8.5.
For a simply supported beam, it can be shown that the resultant matrices [Ã(4)] given

by Equation (11) and [Ã(4)] given by Equation (7b) after removing the columns and rows
corresponding to the supports are in fact the same. It was also found that the numerical
results so obtained were very accurate [9, 11]. However, it is also known that the numerical
results may not be reliable, as reported by Shu and Du [14]. For free vibration analysis, there
may be additional zero and=or phantom eigenvalues. As a result, the procedure to impose the
boundary conditions into the weighting coe�cient matrices has to be reviewed.
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4. PRESENT APPROACH TO MODIFY THE WEIGHTING
COEFFICIENT MATRICES

Let the m boundary conditions for the di�erential equation in Equation (3) be given in the
following non-homogenous mixed form as

�i1
dm−1y
dxm−1

∣∣∣∣
x=�xi

+ �i2
dm−2y
dxm−2

∣∣∣∣
x=�xi

+ · · ·+ �imy(�xi)=�i for i=1; 2; : : : ; m (12)

where �ij and �i are the constant coe�cients (and some of them may be zero), �x1; : : : ; �xm are
the co-ordinates of the boundary points (�x1; : : : ; �xm may not be all distinct). For example, for
initial value problems, �x1 = · · · = �xm=0 corresponds to the initial starting point [40–43]. For
boundary value problems, �xi would be 0 or 1. In a more general situation, �xi can be arbitrary
within the interval.
If the n di�erential quadrature analogous equations of the governing di�erential equations

in Equation (4) are to be used, additional auxiliary sampling grid points are required. Let the
m additional auxiliary sampling grid points be xn+1; xn+2; : : : ; xn+m. The extended di�erential
quadrature rules are still given by Equation (1) with n replaced by n+m, i.e.



y(r)1
...

y(r)n

y(r)n+1
...

y(r)n+m




=




A(r)11 · · · A(r)1n A(r)1; n+1 · · · A(r)1; n+m
...

...
...

...

A(r)n1 · · · A(r)nn A(r)n; n+1 · · · A(r)n; n+m

A(r)n+1;1 · · · A(r)n+1; n A(r)n+1; n+1 · · · A(r)n+1; n+m
...

...
...

...

A(r)n+m;1 · · · A(r)n+m;n A(r)n+m;n+1 · · · A(r)n+1; n+m







y1
...

yn

yn+1
...

yn+m




(13)

or

{Y(r)1 }=[A(r)1 A(r)2 ]

{
Y1

Y2

}
(14a)

and

{Y(r)2 }=[A(r)3 A(r)4 ]

{
Y1

Y2

}
(14b)

where

{Y(r)1 } =



y(r)1
...

y(r)n



; {Y(r)2 }=



y(r)n+1
...

y(r)n+m



; {Y1}=



y1
...

yn




{Y2} =



yn+1
...

yn+m



; y(r)j =

dry
dxr

∣∣∣∣
x=xj

(15a)
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{Y(0)1 } = {Y1}; [A(r)1 ]=



A(r)11 · · · A(r)1n
...

...

A(r)n1 · · · A(r)nn


 ; [A(r)2 ]=



A(r)1; n+1 · · · A(r)1; n+m
...

...

A(r)n; n+1 · · · A(r)n; n+m


 (15b)

{Y(0)2 }={Y2}; [A(r)3 ]=



A(r)n+1;1 · · · A(r)n+1; n
...

...

A(r)n+m;1 · · · A(r)n+m;n


 [A(r)4 ] =



A(r)n+1; n+1 · · · A(r)n+1; n+m

...
...

A(r)n+m;n+1 · · · A(r)n+m;n+m


 (15c)

Note that in establishing Equation (4), only [A(r)1 ] and [A
(r)
2 ] are required. However, some

of the values in [A(r)3 ] and [A
(r)
4 ] are also required to establish the di�erential quadrature

analogous equations of the boundary conditions.
The di�erential quadrature analogous equations of the boundary condition in Equation (12)

can be written as

[�i1 �i2 · · · �im]



A(m−1)j1 · · · A(m−1)jn A(m−1)j; n+1 · · · A(m−1)j; n+m

...
...

...
...

A(0)j1 · · · A(0)jn A(0)j; n+1 · · · A(0)j; n+m







y1
...

yn

yn+1
...

yn+m




=�i (16)

where the boundary point �xi corresponds to one of the xj in x1; : : : ; xn+m so that A
(r)
ij can be

obtained from Equation (13). It is possible that �xi is in fact included in x1; : : : ; xn so that the
boundary point is also one of the collocation points (essential sampling grid
points).
The �rst two matrices in Equation (16) can be combined as

[�i1 · · · �i; n �i; n+1 · · · �i; n+m]




y1
...

yn

yn+1
...

yn+m




=�i (17)
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As a result, the m boundary conditions can be collectively written as



�11 · · · �1; n �1; n+1 · · · �1; n+m
...

...
...

...

�m1 · · · �m;n �m;n+1 · · · �m;n+m







y1
...

yn

yn+1
...

yn+m




=



�1
...

�m




or

[�1]{Y1}+ [�2]{Y2}= {R} (18)

Hence, from Equation (18), if [�2] is non-singular, {Y2} can be expressed as
{Y2}= − [�2]−1[�1]{Y1}+ [�2]−1{R} (19)

Equation (14a) then becomes

{Y(r)1 }= ([A(r)1 ]− [A(r)2 ][�2]−1[�1]){Y1}+ [A(r)2 ][�2]−1{R}
= [Ã(r)]{Y1}+ [B̃(r)]{R} (20)

Equation (20) is the modi�ed di�erential quadrature rule with the non-homogenous mixed-
type boundary conditions in Equation (12) imposed. The interpolated solutions would satisfy
the boundary conditions exactly. [Ã(r)] and [B̃(r)] are the modi�ed weighting coe�cient matrix
and the coe�cient matrix for the non-homogenous terms, respectively.
Equation (4) then becomes(

m∑
r=0
�r[Ã(m−r)]

)
{Y1}= {f} −

(
m∑
r=0
�r[B̃(m−r)]

)
{R} (21)

{Y1} can be solved from Equation (21).

5. SAMPLING GRID POINTS

In choosing the auxiliary sampling grid points, xn+1, xn+2; : : : ; xn+m, it is important that all the
sampling grid points x1; x2; : : : ; xn+m must be distinct. Otherwise the weighting coe�cients A

(r)
ij

in Equation (13) cannot be evaluated. Besides, the boundary point �xi should be included in
x1; : : : ; xn+m. Otherwise, the weighting coe�cients A

(r)
ij used in Equation (16) may have to be

determined separately. As a result, if the boundary point �xi is not in x1; x2; : : : ; xn, then �xi should
be included in the auxiliary sampling grid points xn+1; xn+2; : : : ; xn+m. This arrangement would
facilitate the computation of the modi�ed weighting coe�cient matrices in Equation (20).
It can be veri�ed that the modi�ed weighting coe�cient matrices [Ã(r)] and [B̃(r)] in

Equation (20) are in fact independent of the non-boundary auxiliary sampling grid points.
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In other words, the actual values of the auxiliary sampling grid points are not important as
long as there is no numerical stability problem in evaluating the weighting coe�cients A(r)ij in
Equation (13). As a result, the auxiliary sampling grid points need not be too close to the
other sampling grid points at the boundary. Hence, the �-technique is not really necessary.
Tomasiello [44] had also observed this independence in his numerical calculations. He had

chosen 0, b2, b3, 1 − b3, 1 − b2 and 1 as the sampling grid points. However, he found that
the third co-ordinate b3 played an important role in obtaining good results while varying the
co-ordinate of the second node b2 did not have much in�uence on the numerical results. It
can be checked that b2 is in fact a non-boundary auxiliary node.
This �nding is not too surprising, as the di�erential quadrature method is in fact equivalent

to the collocation method. In the collocation method, only the collocation points (equivalent to
the present essential sampling grid points x1; x2; : : : ; xn) are speci�ed while the trial functions
satisfy the given boundary conditions initially. The weighting coe�cients are then obtained
by di�erentiating the trial functions and then substituting the co-ordinates of the sampling
grid points into the resultant expressions. There are no auxiliary sampling grid points in the
formulation. Alternatively, the weighting coe�cient matrices can also be obtained by matrix
manipulation [16]. Again, it can be seen that there are no auxiliary sampling grid points. In
both cases, the trial functions are polynomial of degree n+m− 1.
On the other hand, in the present formulation, the trial functions are expressed as Lagrange

polynomials with sampling grid points at x1; x2; : : : ; xn+m. The polynomials are of degree n+
m − 1 as well. If the Lagrange polynomials also satisfy the boundary conditions, then the
polynomials would be equivalent to the trial functions used in the collocation method. Hence,
the two algorithms are in fact equivalent. The present formulation is simpler as the trial
functions satisfying the given boundary conditions need not be determined �rst before the
calculation of the weighting coe�cients can be carried out. Besides, the determination of the
trial functions could be quite di�cult for mixed-type boundary conditions.
In the following, the formulations for the second- and fourth-order equations are considered.

6. SECOND-ORDER EQUATIONS

Consider a second-order equation in the form

d2y
dx2

+ �1
dy
dx
+ �2y = f(x) for 0¡ x ¡ 1 (22)

with general mixed-type boundary conditions

�11

(
dy
dx

)
x= 0

+ �12y(0)=�1 at x=0 (23a)

and

�21

(
dy
dx

)
x= 1

+ �22y(1)=�2 at x=1 (23b)

where �11, �12, �21, �22, �1, and �2 are constant values. Since the boundary points x=0 and 1
have to be included in the sampling grid points, let the n+2 sampling grid points be arranged
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in an ascending order as 0= x1¡x2¡ · · · xn+1¡xn+2 =1. The di�erential quadrature rules are
given by



y(r)1
...

y(r)n+2



=



A(r)11 · · · A(r)1; n+2
...

...

A(r)n+2;1 · · · A(r)n+2; n+2





y1
...

yn+2




(24)

Similarly, the two boundary conditions can be written as


�11A(1)11 + �12 �11A

(1)
12 · · · �11A

(1)
1; n+1 �11A

(1)
1; n+2

�21A
(1)
n+2;1 �21A

(1)
n+2;2 · · · �21A

(1)
n+2; n+1 �21A

(1)
n+2; n+2 + �22





y1
...

yn+2



=

{
�1

�2

}
(25)

Any two unknowns from y1; : : : ; yn+2 can be eliminated using Equation (25). In general,
the sampling grid points x2; : : : ; xn+1 will be chosen to establish the di�erential quadrature
analogous equations of the governing di�erential equations. The two end points x1 and xn+2
are then treated as auxiliary sampling grid points. In this case, y1 and yn+2 can be expressed
in terms of y2; : : : ; yn+1 as

{
y1

yn+2

}
=


�11A(1)11 + �12 �11A

(1)
1; n+2

�21A
(1)
n+2;1 �21A

(1)
n+2; n+2 + �22



−1

×



{
�1

�2

}
−

 �11A

(1)
12 · · · �11A

(1)
1; n+1

�21A
(1)
n+2;2 · · · �21A

(1)
n+2; n+1





y2
...

yn+1





 (26)

The di�erential quadrature rules at x2; : : : ; xn+1 in Equation (24) are then written as

y(r)2
...

y(r)n+1



=
[
Ã(r)

]


y2
...

yn+1



+ [B̃(r)]

{
�1

�2

}
(27)

where

[Ã(r)] =



A(r)22 · · · A(r)2; n+1
...

...

A(r)n+1;2 · · · A(r)n+1; n+1


− [B̃(r)]


 �11A

(1)
12 · · · �11A

(1)
1; n+1

�21A
(1)
n+2;2 · · · �21A

(1)
n+2; n+1


 (28a)
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[B̃(r)] =



A(r)21 A(r)2; n+2
...

...

A(r)n+1;1 A(r)n+1; n+2




�11A(1)11 + �12 �11A

(1)
1; n+2

�21A
(1)
n+2;1 �21A

(1)
n+2; n+2 + �22



−1

(28b)

6.1. Weighting coe�cient matrices from the collocation method

Alternatively, the di�erential quadrature rules in Equation (27) can be obtained from the
collocation method as well. The trial functions have to satisfy the boundary conditions in
Equation (23). Let

y(x)=y1Ln+11 (x) + y2J2(x) + · · ·+ yn+1Jn+1(x) + yn+2Ln+1n+2(x) (29)

where

Jk(x)=Ln+1k (x) + akLn+11 (x) + bkLn+1n+2(x) for k=2; 3; : : : ; n+ 1 (30)

ak and bk are some undetermined coe�cients, and Ln+1k (x) is the (n + 1)th order Lagrange
polynomial and is given by

Ln+1k (x)=
n+2∏
j=1
j �=k

x − xj
xk − xj for 16k6n+ 2 (31)

It can be seen that Jk(xk)=1 and Jk(xj)=0 when k �= j for 26j6n+ 1 and 26k6n+ 1.
Furthermore, ak and bk can be determined such that

�11J ′k(0) + �12Jk(0)=0 and �21J ′k(1) + �22Jk(1)=0 (32)

Since

Jk(0)=ak ; J ′k(0)=A
(1)
1k + akA

(1)
11 + bkA

(1)
1; n+2

Jk(1)=bk ; J ′k(1)=A
(1)
n+2; k + akA

(1)
n+2;1 + bkA

(1)
n+2; n+2

(33)

ak and bk can be evaluated as{
ak

bk

}
= −


�11A(1)11 + �12 �11A

(1)
1; n+2

�21A
(1)
n+2;1 �21A

(1)
n+2; n+2 + �22



−1


�11A

(1)
1k

�21A
(1)
n+2; k


 (34)

y1 and yn+2 are determined such that the boundary conditions are satis�ed, i.e.

�11y′(0) + �12y(0)=�11(y1A
(1)
11 + yn+2A

(1)
1; n+2) + �12y1 =�1

�21y′(1) + �22y(1)=�21(y1A
(1)
n+2;1 + yn+2A

(1)
n+2; n+2) + �22yn+2 =�2

(35)

or {
y1

yn+2

}
=


�11A(1)11 + �12 �11A

(1)
1; n+2

�21A
(1)
n+2;1 �21A

(1)
n+2; n+2 + �22



−1{

�1

�2

}
(36)
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The di�erential quadrature rules in Equation (27) can be obtained by di�erentiating
Equation (29) with respect to x and substituting the values of x= x2; : : : ; xn+1 one by one.
It can be shown that the results are in fact equivalent to Equations (28a) and (28b). How-
ever, the present procedure in Equation (28) is easier to implement.
Of course, other n sampling grid points from x1; : : : ; xn+2 may be chosen. For example, if

x1; : : : ; xn are chosen (i.e. eliminating xn+1 and xn+2), then the di�erential quadrature rules are
then written as 


y(r)1
...

y(r)n



=[Ã(r)]



y1
...

yn



+ [B̃(r)]

{
�1

�2

}
(37)

where

[Ã(r)]=



A(r)11 · · · A(r)1; n
...

...

A(r)n;1 · · · A(r)n; n


− [B̃(r)]


�11A(1)1;1 + �12 �11A

(1)
1;2 · · · �11A

(1)
1; n

�21A
(1)
n+2;1 �21A

(1)
n+2;2 · · · �21A

(1)
n+2; n


 (38a)

[B̃(r)]=



A(r)1; n+1 A(r)1; n+2
...

...

A(r)n; n+1 A(r)n; n+2




 �11A

(1)
1; n+1 �11A

(1)
1; n+2

�21A
(1)
n+2; n+1 �21A

(1)
n+2; n+2 + �22



−1

(38b)

It can be veri�ed that the matrices [Ã(r)] and [B̃(r)] in Equation (38) are independent of the
value of xn+1.
Once the weighting coe�cient matrices are evaluated, the di�erential quadrature analogous

equations of the governing di�erential equations (with the boundary conditions incorporated)
are given by

([Ã(2)] + �1[Ã(1)] + �2[I]){Y1}= {f} − ([B̃(2)] + �1[B̃(1)]){R} (39)

7. FOURTH-ORDER EQUATIONS

Consider a fourth-order equation in the form

d4y
dx4

+ �1
d3y
dx3

+ �2
d2y
dx2

+ �3
dy
dx
+ �4y=f(x) for 0¡x¡1 (40)

with Dirichlet and Neumann-types boundary conditions:

y(0)= u1; y′(0)= �1; y(1)= u2; y′(1)= �2 (41)
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Since the boundary points x=0 and 1 have to be included, let the n+4 sampling grid points be
arranged in ascending order as 0= x1¡x2¡ · · ·¡xn+3¡xn+4 =1. The four boundary conditions
can be written as


1 0 · · · 0 0

A(1)1;1 A(1)1;2 · · · A(1)1; n+3 A(1)1; n+4
0 0 · · · 0 1

A(1)n+4;1 A(1)n+4;2 · · · A(1)n+4; n+3 A(1)n+4; n+4





y1
...

yn+4


=




u1
�1
u2
�2




(42)

Any four unknowns from y1; : : : ; yn+4 can be eliminated using Equation (42). In general,
the sampling grid points x3; : : : ; xn+2 will be chosen to establish the di�erential quadrature
analogous equations of the governing di�erential equations. The remaining points x1 = 0,
x2; xn+3 and xn+4 =1 are treated as auxiliary sampling grid points. In this case, Equation (42)
gives




y1

y2
yn+3
yn+4



=




1 0 0 0

A(1)1;1 A(1)1;2 A(1)1; n+3 A(1)1; n+4

0 0 0 1

A(1)n+4;1 A
(1)
n+4;2 A

(1)
n+4; n+3 A

(1)
n+4; n+4




−1





u1
�1
u2
�2




−




0 · · · 0

A(1)1;3 · · · A(1)1; n+2
0 · · · 0

A(1)n+4;3 · · · A(1)n+4; n+2





y3
...

yn+2







(43)
The di�erential quadrature rules are then written as


y(r)3
...

y(r)n+2



=[Ã(r)]



y3
...

yn+2


+ [B̃(r)]




u1
�1
u2
�2




(44)

where

[Ã(r)]=



A(r)33 · · · A(r)3; n+2
...

...

A(r)n+2;3 · · · A(r)n+2; n+2


− [B̃(r)]




0 · · · 0

A(1)1;3 · · · A(1)1; n+2

0 · · · 0

A(1)n+4;3 · · · A(1)n+4; n+2


 (45a)

[B̃(r)]=



A(r)31 A(r)3;2 A(r)3; n+3 A(r)3; n+4
...

...
...

...

A(r)n+2;1 A(r)n+2;2 A(r)n+2; n+3 A(r)n+2; n+4







1 0 0 0

A(1)1;1 A(1)1;2 A(1)1; n+3 A(1)1; n+4
0 0 0 1

A(1)n+4;1 A(1)n+4;2 A(1)n+4; n+3 A(1)n+4; n+4




−1

(45b)

The di�erential quadrature rules in Equation (44) can also be obtained from the collocation
method by using the Hermite functions as the trial functions [17]. Alternatively, it can also
be established by inverting matrices as reported in Reference [16]. It can be seen that the
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determination of the trial functions satisfying the given boundary conditions is already quite
complicated for the second-order equations. The formulation is even more complicated for
higher-order equations with mixed boundary conditions. The present formulation therefore has
an advantage of being much easier to implement and equivalent results are to be obtained.
Once the weighting coe�cient matrices are evaluated, the di�erential quadrature analogous

equations of the governing di�erential equations (with the boundary conditions incorporated)
are given by

([Ã(4)] + �1[Ã(3)] + �2[Ã(2)] + �3[Ã(1)] + �4[I]){Y1}
= {f} − ([B̃(4)] + �1[B̃(3)] + �2[B̃(2)] + �3[B̃(1)]){R} (46)

It can be veri�ed that the matrices [Ã(r)] and [B̃(r)] are independent of the values of x2
and xn+3. Since x1 = 0 and xn+4 =1 are the boundary points, the remaining n sampling grid
points that need to be chosen are x3; : : : ; xn+2. They can be equally spaced grid points or
roots of some orthogonal polynomials. Note that x2 and xn+3 are not included in the selection.
Eventually, x2 and xn+3 can be assigned some convenient values, for example,

x2 = (x1 + x3)=2 and xn+3 = (xn+2 + xn+4)=2 (47)

Other choices are also possible. For example, x2 and xn+3 could be

x2 = (x3 + x4)=2 and xn+3 = (xn+1 + xn+2)=2 (48)

It can be veri�ed that the same modi�ed weighting coe�cient matrices in Equations (45a)
and (45b) will be generated.
In conclusion, the most important sampling grid points are those used to establish the

di�erential quadrature analogous equations of the governing di�erential equations. They are
the essential sampling grid points. To establish the di�erential quadrature analogous equations
of the boundary conditions, the boundary points with boundary conditions speci�ed should
be included as auxiliary sampling grid points if they are not already included in the essential
sampling grid points. Additional auxiliary sample grid points are used to supply the required
n + m distinct sampling grid points to construct the polynomials (trial functions) of degree
n+m− 1. In this case, the actual values of these additional auxiliary sample grid points are
irrelevant.
It can also be concluded that the � grid points are not necessary. If the boundary conditions

are not apply to these � grid points and no di�erential quadrature analogous equation of the
governing di�erential equation is established at these points, the actual values for the � grid
points are irrelevant. Hence, these points need not be too close to the boundary points.
In the formulation, the di�erential quadrature analogous equations of the governing di�er-

ential equations at any sampling grid point can be discarded and replaced by the di�erential
quadrature analogous equations of the boundary conditions. However, it is essential that the
remaining sample grid points for the di�erential quadrature analogous equations of the di�er-
ential equations should be well spread to cover the domain under investigation. It is common
that the sampling grid points on and just next to the boundaries are treated as auxiliary sam-
pling grid points. Sometimes, the remaining sampling grid points are not well spread. As a
result, some transformations have been suggested to sketch the sample grid points out to have
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a better coverage [15, 31, 32]. Again, under the present viewpoint, this transformation is not
necessary. The essential sampling grid points should be speci�ed directly and have a good
spread initially. For example, these essential sampling grid points should be the Chebyshev–
Gauss–Lobatto points without considering the auxiliary sampling grid points. Hence, future
studies on the accuracy of the numerical solutions should focus on the distribution of the
essential sampling grid points only, rather than which sampling grid points should be dis-
carded [31].

8. NUMERICAL EXAMPLES

8.1. Free vibration of beams with simply supported and clamped ends

The non-dimensional governing equation for the free vibration of a uniform beam is

d4w
dx4

=�2w (49)

where �=�A0L4!2=EI is the dimensionless natural frequency, w, !, A0, L, �, E, and I are
the lateral de�ection, the natural frequency of free vibration, the constant cross-sectional area,
the length of the beam, the mass density, the elastic modulus, and the constant area moment
of inertia about the neutral axis, respectively. Since the governing equation is fourth order,
two boundary conditions are needed at each end. The simply supported, clamped, and free
boundary conditions can be expressed as

w=0 and
d2w
dx2

= 0 for simply supported end (50a)

w=0 and
dw
dx
=0 for clamped end (50b)

d2w
dx2

= 0 and
d3w
dx3

= 0 for free end (50c)

Consider the free vibration of a simply supported beam. Table I shows the �rst two di-
mensionless natural frequencies �1 and �2 obtained by various methods. The exact solution
for �k is k2�2. It can be seen that very accurate numerical results are obtained by using the
approach proposed by Wang and Bert [9] and Malik and Bert [11] when uniform sampling
grid points are used. If there are N equally spaced sampling grid points, the co-ordinates of
the sampling grid points are given by

xi=
i − 1
N − 1 for i=1; : : : ; N (51)

If the following non-uniform sampling grid points are used,

xi=
1
2

(
1− cos

(
i − 1
N − 1 �

))
for i=1; : : : ; N (52)

the numerical results will be even more accurate. The sampling grid points given in
Equation (52) are also known as the Chebyshev–Gauss–Lobatto points. After the imposition
of boundary conditions, the number of unknowns reduces to N − 2.
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Table I. Comparison of results for free vibration of a simply supported beam.

Type of No. of No. of Relative error in
Method grid points grid points unknowns �1 �2 �1 �2

Exact — — — 9.8696 39.4784 — —

Modify weighting Uniform 7 5 9.8675 41.6495 −2.15E-04 5.50E-02
coe�cient matrices Equation (51) 8 6 9.8683 39.2411 −1.29E-04 −6.01E-03
as in References
[9, 11]

Modify weighting Uniform+aux 7 3 9.9165 35.0542 4.75E-03 −1.12E-01
coe�cient matrices as Equation (53) 8 4 9.8948 41.3037 2.56E-03 4.62E-02
presented in this 9 5 9.8686 40.4094 −1.06E-04 2.36E-02
paper 10 6 9.8690 39.3634 −6.40E-05 −2.91E-03
Modify weighting Uniform 7 3 9.9591 31.1769 9.07E-03 −2.10E-01
coe�cient matrices Equation (51) 8 4 9.9364 44.9208 6.76E-03 1.38E-01
as presented in this 9 5 9.8669 42.8479 −2.69E-04 8.54E-02
paper 10 6 9.8676 39.1580 −2.01E-04 −8.12E-03
Modify weighting Non-uniform 7 5 9.8697 39.5133 8.01E-06 8.83E-04
coe�cient matrices Equation (52) 8 6 9.8696 39.4778 2.73E-06 −1.60E-05
as in References
[9, 11]

Modify weighting Non-uniform+aux 7 3 9.8449 45.7662 −2.51E-03 1.59E-01
coe�cient matrices Equation (54) 8 4 9.8688 38.8385 −7.93E-05 −1.62E-02
as presented in this 9 5 9.8696 39.5292 3.51E-06 1.29E-03
paper 10 6 9.8696 39.4768 1.36E-06 −4.13E-05
Modify weighting Non-uniform 7 3 9.9165 35.0542 4.75E-03 −1.12E-01
coe�cient matrices Equation (52) 8 4 9.8913 40.9341 2.19E-03 3.69E-02
as presented in this 9 5 9.8689 40.0744 −7.28E-05 1.51E-02
paper 10 6 9.8693 39.4174 −3.41E-05 −1.55E-03

For the present method, 4 auxiliary sampling grid points are required. If there are N
sampling grid points, then N − 4 of them will be the essential sampling grid points with
the di�erential quadrature analogous equations of the governing di�erential equations estab-
lished. The N − 4 sampling grid points may be uniform or non-uniform. The co-ordinates are
given by

xi =
i

n+ 1
; i=1; : : : ; n for uniform sampling grid points (53)

xi =
1
2

(
1− cos

(
i

n+ 1
�
))

; i=1; : : : ; n for non-uniform sampling grid points (54)

where n=N − 4. The two end points could be included as xn+1 and xn+2 (i.e. xn+1 =0 and
xn+2 =1). Another 2 sampling grid points, xn+3 and xn+4, can be arbitrary. In the �-technique,
xn+3 and xn+4 are close to the boundary points (i.e. xn+3 = � and xn+4 =1− �). In the present
calculation, xn+3 = x1=2 and xn+4 = (xn + 1)=2.
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Table II. Comparison of results for free vibration of a clamped–simply supported beam.

Type of No. of No. of Relative error in
Method grid points grid points unknowns �1 �2 �1 �2

Exact — — — 15.4182 49.9649 — —

Modify weighting Uniform 7 5 15.3383 60.2466 −5.18E-03 2.06E-01
coe�cient matrices Equation (51) 8 6 15.4019 47.6015 −1.06E-03 −4.73E-02
as in References
[9, 11]

Modify weighting Non-uniform 7 5 15.4114 50.3658 −4.42E-04 −8.02E-03
coe�cient matrices Equation (52) 8 6 15.4173 49.7935 −5.78E-05 −3.43E-03
as in References
[9, 11]

Modify weighting Non-uniform+aux 7 3 15.3592 58.7377 −3.83E-03 1.76E-01
coe�cient matrices Equation (54) 8 4 15.4221 48.9954 2.50E-04 −1.94E-02
as presented in 9 5 15.4180 50.1467 −1.24E-05 3.64E-03
this paper 10 6 15.4182 49.9504 2.86E-06 −2.90E-04

From Table I, it can be seen that for the same number of sampling grid points, the re-
sults obtained by the method proposed by Wang and Bert [9] and Malik and Bert [11]
are more accurate than the present method. However, it should be noted that the num-
ber of unknowns for their method is N−2 while it is N−4 for the present method. If the
same number of unknowns is considered, from Table I, it can be seen that the results ob-
tained by the two methods are comparable for both uniform and non-uniform sampling grid
points.
Table I also shows the results obtained by the conventional approach, i.e. using the sampling

grid points in Equations (51) and (52) for both the essential and auxiliary sampling grid points.
It can be seen that the results are not very good, as the essential sampling grid points are not
well spread.
The numerical results for the clamped–simply supported beam and the clamped–clamped

beam are also considered. Tables II and III show the numerical results obtained by using
various methods. It can be seen that the same conclusion can be drawn. Hence, in terms of
accuracy, the present approach to modify the weighting coe�cient matrices is as good as the
previous method presented in References [9, 11].
However, it should be noted that the numerical results obtained by the methods presented in

References [9, 11] need careful interpretation. For clamped–clamped beam, it can be veri�ed
that a zero eigenvalue is always presented. Hence, the sti�ness matrix is singular and cannot be
used to solve static problems. As a result, the procedure to impose the boundary conditions into
the weighting coe�cient matrices has to be reviewed carefully again. On the other hand, the
present procedure to impose the boundary conditions into the modi�ed weighting coe�cient
matrices does not give zero eigenvalue, as the present method is equivalent to the collocation
method. This is an important improvement over the existing approaches on how the weighting
coe�cient matrices should be modi�ed.
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Table III. Comparison of results for free vibration of a clamped–clamped beam.

Type of No. of No. of Relative error in
Method grid points grid points unknowns �1 �2 �1 �2

Exact — — — 22.3733 61.6728 — —

Modify weighting Uniform 7 5 No real values — —
coe�cient matrices Equation (51) 8 6 22.2891 No value −3.76E-03 —
as in References
[9, 11]
(with the �rst zero
eigenvalue ignored)

Modify weighting Non-uniform 7 5 23.5535 63.0943 5.27E-02 2.30E-02
coe�cient matrices Equation (52) 8 6 22.3676 66.2463 −2.54E-04 7.42E-02
as in References
[9, 11]
(with the �rst zero
eigenvalue ignored)

Modify weighting Non-uniform+aux 7 3 21.9677 87.6356 −1.81E-02 4.21E-01
coe�cient matrices Equation (54) 8 4 22.4442 58.8049 3.17E-03 −4.65E-02
as presented in
this paper 9 5 22.3707 62.6132 −1.17E-04 1.52E-02

10 6 22.3733 61.5867 9.01E-08 −1.40E-03

8.2. Free vibration of a cantilever beam

There can be some interesting observation made from the numerical results presented in
Reference [1]. From Table III in Reference [1], it can be seen that the numerical results for
N =7 for Types II and III sampling grid points are the same. The sampling grid points for
Types II and III with N =7 are given by

Type II: x1 = 0; x2 = �; x3 = 1
4 ; x4 =

1
2 ; x5 =

3
4 ; x6 = 1− �; x7 = 1 (55a)

Type III: x1 = 0; x2 = 1
2 −

√
3
4 ; x3 =

1
4 ; x4 =

1
2 ; x5 =

3
4 ; x6 =

1
2 +

√
3
4 ; x7 = 1 (55b)

It can be seen that, even though x2 and x6 are di�erent in these two cases, they give the same
numerical results since x2 and x6 are the auxiliary sampling grid points only. This con�rms the
present argument that the actual values for the auxiliary sampling grid points are irrelevant.
If the essential and auxiliary sampling grid points can be considered separately, the choice

of the sampling grid points could be more �exible. For example, the Legendre–Gauss points
can be used for the essential sampling grid points only. The auxiliary sampling grid points are
then decided later on. Table IV shows that the numerical results given by the Legendre–Gauss
grid points could be better than the results given by the unequally spaced sampling points
with adjacent �-grid points (Type IV in Reference [1]), i.e.

x1 = 0; x2 = �; xN−1 = 1− �; xN =1; xi= 12
(
1− cos

(
i − 1
N − 3 �

))
; i=3; : : : ; N − 2 (56)
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Table V. Comparison of results for free vibration of a free–free beam by using
various sampling grid points.

Type of No. of No. of Relative error in
grid points grid points unknowns �3 �4 �3 �4

Exact solution — — 22.3733 61.6728 — —

Uniform 9 5 22.9391 48.2647 2.53E-02 −2.17E-01
Equation (51) 10 6 22.8291 78.2793 2.04E-02 2.69E-01

Uniform+sketch 9 5 22.6646 53.1711 1.30E-02 −1.38E-01
Equations (51) and (57) 10 6 22.5512 66.3655 7.95E-03 7.61E-02

Uniform+aux 9 5 22.7030 52.2343 1.47E-02 −1.53E-01
Equation (53) 10 6 22.6058 68.4660 1.04E-02 1.10E-01

Non-uniform 9 5 22.6347 53.8801 1.17E-02 −1.26E-01
Equation (52) 10 6 22.5266 65.5865 6.85E-03 6.35E-02

Non-uniform+sketch 9 5 22.3904 62.8837 7.64E-04 1.96E-02
Equations (52) and (57) 10 6 22.3878 61.5654 6.48E-04 −1.74E-03
Non-uniform+aux 9 5 22.4143 60.9952 1.83E-03 −1.10E-02
Equation (54) 10 6 22.3905 62.0076 7.70E-04 5.43E-03

Non-uniform+aux 9 5 22.3665 63.5317 −3.04E-04 3.01E-02
Legendre points 10 6 22.3738 61.4931 2.49E-05 −2.91E-03
Note: The �rst two zero eigenvalues are omitted.

Note that even though the �-grid points are used, the boundary conditions are applied at
the boundary points and not at the �-grid points (see Example 3 in Reference [1] for more
details). The same numerical results can be obtained by the present approach if the essential
sampling grid points in Equation (54) are used.
Table IV also shows the results obtained by the using the modi�ed weighting coe�cient

matrices presented in Reference [11] with uniform and non-uniform sampling grid points
given by Equations (51) and (52). It can be seen that, for the same number of unknowns,
the present method using the Legendre–Gauss points gives better results. Hence, the ability
to separate the essential sampling grid points from the auxiliary sampling grid points gives
more �exibility in choosing the sampling grid points and, hence, could give more accurate
results.

8.3. Free vibration of a free–free beam

It has been suggested that the remaining sampling grid points may need to be stretched
towards the boundaries in order to get better numerical results [15, 31, 32]. For example, it
was recommended that the sampling grid points xi should be transformed by using the formula

(1− �)(3x2i − 2x3i ) + �xi (57)

This is especially important for free–free beams. It is recommended that �=0 should be
used. The numerical results obtained by using various methods are shown in Table V. It can
be seen that the numerical results are improved by using the transformation in Equation (57)
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to stretch the sampling grid points. The main function is to give a better coverage of the
sampling grid points. It can be seen that, in the present formulation, comparable results can
be obtained and there is no need to apply any transformation since the sampling grid points
are speci�ed directly. In fact, by specifying the Legendre–Gauss sampling grid points as the
essential sampling grid points, more accurate results can be obtained. The present formulation
therefore is more �exible in choosing the sampling grid points. It is advocated in this paper
that the main focus should be on the choice of the essential sampling grid points.

8.4. De�ection of thin rectangular plates

The normalized governing equation for a thin rectangular plate is

@4W
@X 4

+ 2�2
@4W
@X 2@Y 2

+ �4
@4W
@Y 4

=
pa4

D
(58)

where W , X= x=a, and Y=y=b are the normalized dimensionless de�ection and co-ordinates,
respectively, a and b are the length and the width of the rectangular plate, respectively, �= a=b
is the aspect ratio, D=Eh3=(12(1−	2)) is the �exural rigidity, E, 	, h, and p are the Young’s
modulus, Poisson’s ratio, plate thickness, and the lateral load on the plate, respectively.
The boundary conditions for a plate with all four edges clamped are

W (X; 0)=W (X; 1)=W (0; Y )=W (1; Y )=0

@W
@Y

(X; 0)=
@W
@Y

(X; 0)=
@W
@X

(0; Y )=
@W
@X

(1; Y )=0
(59)

and the boundary conditions for a plate with all four edges simply supported are

W (X; 0)=W (X; 1)=W (0; Y )=W (1; Y )=0

@2W
@Y 2

(X; 0)=
@2W
@Y 2

(X; 0)=
@2W
@X 2

(0; Y )=
@2W
@X 2

(1; Y )=0
(60)

Many researchers have used the di�erential quadrature method to �nd the static de�ection
under various types of loading and boundary conditions [6, 7, 14, 15]. In the present study, the
main concern is the in�uence of the distribution of the sampling grid points. Table VI shows
the numerical results obtained by using various methods when pa4=D=1000. Wssss and Wcccc
are used to denote the calculated central de�ections of the plate with all four edges simply
supported and clamped, respectively. It can be seen that more accurate results are obtained if
the essential sampling grid points are chosen from the Legendre or Chebyshev–Gauss–Lobatto
points. The auxiliary sampling grid points should not be included when considering the choice
of the sample grid points.
As mentioned in Reference [11], some boundary conditions may involve mixed derivatives,

for example, bending moment for an-isotopic plates or composite plates, or the @3W=@2X@Y
and @3W=@X@2Y terms for zero e�ective shear force. In these cases, the boundary condi-
tions cannot be incorporated in the weighting coe�cient matrices directly since the weighting
coe�cient matrices involve only one spatial direction. This situation can still be handled by
constructing the di�erential quadrature analogous equations of the appropriate boundary con-
ditions, as in Reference [15]. For skewed or composite plates, other special techniques for
the di�erential quadrature method are available [45–49].
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Table VI. Comparison of results for static de�ection of square plate by using various
sampling grid points (pa2=D=1000).

Type of No. of No. of Relative error in
grid points grid points unknowns Wssss Wcccc Wssss Wcccc

Exact solution — — 4.0624 1.2653 — —

Uniform 7×7 9 3.9560 1.2344 −2.62E-02 −2.45E-02
Equation (51) 9×9 25 4.0554 1.2665 −1.72E-03 9.04E-04

Uniform+aux 7×7 9 4.0037 1.2568 −1.44E-02 −6.72E-03
Equation (53) 9×9 25 4.0599 1.2656 −6.13E-04 2.01E-04

Non-uniform 7×7 9 4.0037 1.2568 −1.44E-02 −6.72E-03
Equation (52) 9×9 25 4.0607 1.2655 −4.02E-04 9.20E-05

Non-uniform+aux 7×7 9 4.0966 1.2826 8.44E-03 1.36E-02
Equation (54) 9×9 25 4.0626 1.2655 5.33E-05 1.23E-04

Non-uniform+aux 7×7 9 4.1300 1.2857 1.66E-02 1.61E-02
Legendre points 9×9 25 4.0625 1.2682 3.31E-05 2.25E-03

8.5. Isothermal reactor with axial mixing

Consider the steady-state solution of an isothermal reactor with axial mixing. The governing
equation is given by [12]

1
Pe
d2p
dx2

− dp
dx

− rp2 = 0 for 06x6L (61)

with the Cauchy and Neumann boundary conditions, respectively

p− 1
Pe
dp
dx
=p∗ at x=0 (62a)

and

dp
dx
=0 at x=L (62b)

where x is the distance, L is the reactor length, p is the reactor partial pressure, p∗ is the
entrance partial pressure of the reactor, Pe is the Peclet number, and r is the reactor rate
number. Let X = x=L and P=p=p∗ denote the non-dimensional spatial and pressure variables.
Equation (61) can then be rewritten as

1
PeL

d2P
dX 2

− dP
dX

− rLp∗P2 = 0 for 06X61 (63)

with boundary conditions

P − 1
PeL

dP
dX

= 1 at X =0 and
dP
dX

=0 at X =1 (64)
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The di�erential quadrature analog equation for Equation (63) at x= xi can be written as

1
PeL

P(2)i − P(1)i − rLp∗P2i =0 for 16i6n (65)

where

Pk =P(Xk); P(r)k =
drP
dX r

∣∣∣∣
X=Xk

(66)

Let

{P}=



P1
...

Pn



; {P(1)}=



P(1)1

...

P(1)n



; {P(2)}=



P(2)1

...

P(2)n




(67)

Using the di�erential quadrature rule, {P(1)} is related to {P} by
{P(1)}=[A(1)]{P} (68)

To impose the boundary conditions, Civan [12] suggested that P(1)1 and P(1)n in Equation (68)
should be replaced by

P(1)1 =PeL(P1 − 1) and P(1)n =0 (69)

Therefore, Equation (68) is modi�ed to


P(1)1

P(1)2

...

P(1)n−1

P(1)n



=




PeL 0 · · · 0 0

A(1)21 A(1)22 · · · A(1)2; n−1 A(1)2; n
...

...
...

...

A(1)n−1;1 A(1)n−1;2 · · · A(1)n−1; n−1 A(1)n−1; n

0 0 · · · 0 0







P1

P2
...

Pn−1

Pn




−




PeL

0

...

0

0




(70)

The di�erential quadrature rule for the second derivative {P(2)} is related to {P(1)} by
{P(2)}=[A(1)]{P(1)} (71)

Note that, in general, {P(2)} �=[A(1)]2{P}. From Equations (70) and (71), {P(1)} and {P(2)}
can be expressed in terms of {P}. Hence, the n unknowns P1; P2; : : : ; Pn in {P} can be
solved from the n di�erential quadrature analogous equations in Equation (65) at X1; : : : ; Xn.
The numerical solutions with p∗=0:07, Pe=2, r=1, and L=48 using 5 equal intervals

(n=6) and 10 equal intervals (n=11) are shown in Table VII. The �nite di�erence solutions
given by Lee [50] are also included for comparison. Civan [12] remarked that the quadrature
solutions agreed reasonably well except for the solution at the outlet end of the reactor (x=L
or X =1). It is found that the solution at the outlet is still not very accurate even when 20
equal intervals (n=21) are used. A close examination shows that the numerical solutions
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Table VII. Comparison of the numerical solutions for isothermal reactor with axial
mixing by various methods.

Pressure p (=P∗0:07)

Lee [50] Civan [12] Present

5 Equal 10 Equal 20 Equal 5 Equal 10 Equal 5 Unequal
X (= x=L) FDM intervals intervals intervals intervals intervals intervals∗

0.0 0.068 0.067837 0.067772 0.067781 0.068197 0.067798 0.068025
0.2 0.042 0.039726 0.043746 0.042647 0.043170 0.041797 0.041434
0.4 0.030 0.029378 0.031126 0.030552 0.030727 0.030109 0.029798
0.6 0.023 0.022758 0.024105 0.023759 0.023913 0.023489 0.024012
0.8 0.018 0.019311 0.019631 0.019420 0.019453 0.019239 0.019281
1.0 0.016 0.007580 0.010482 0.014151 0.017431 0.016668 0.016416

Error at X =0 (e0) — −0.599 2.320 2.416 0 0 0
Error at X =1 (e1) — −1.949 −3.264 −2.874 0 0 0

Note:∗The Legendre–Gauss points are used for the unequal intervals.

do not re�ect the boundary conditions correctly. Let the error at the two ends e0 and e1 be
de�ned as

e0 =
n∑
j=1
A(1)1j Pj − PeL(P1 − 1) (72a)

e1 =
n∑
j=1
A(1)nj Pj − 0 (72b)

If the boundary conditions are correctly imposed, both e0 and e1 should be zero. Table VII
shows that e0 and e1 are not zero when the weighting coe�cient matrix are modi�ed to
incorporate the boundary conditions as in Equation (70).
If the boundary conditions are imposed by the present method, the di�erent quadrature

analog equations for the boundary conditions are

n∑
j=1
A(1)1j Pj − PeLP1 =−PeL (73a)

n∑
j=1
A(1)nj Pj − 0= 0 (73b)

Using Equation (73), P1 and Pn can be expressed in terms of P2; : : : ; Pn−1. P
(r)
2 ; : : : ; P (r)n−1 can

then be expressed in terms of P2; : : : ; Pn−1 and the boundary conditions as

P (r)2

...

P (r)n−1



=[Ã(r)]



P2
...

Pn−1



+ [B̃(r)]

{−PeL
0

}
(74)
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where

[Ã(r)] =



A(r)22 · · · A(r)2; n−1
...

...

A(r)n−1;2 · · · A(r)n−1; n−1


− [B̃(r)]


A(r)12 · · · A(r)1; n−1

A(r)n2 · · · A(r)n; n−1


 (75a)

[B̃(r)] =



A(r)21 A(r)2n
...

...

A(r)n−1;1 A(r)n−1; n



[
A(r)11 − PeL A(r)1n

A(r)n1 A(r)nn

]−1

(75b)

[Ã(r)] is the modi�ed weighting coe�cient matrix and [B̃(r)] is the weighting coe�cient matrix
related to the given boundary conditions.
The n − 2 di�erential quadrature analog equations for Equation (64) at X2; : : : ; Xn−1 are

given by
1
PeL

P(2)i − P(1)i − rLp∗P2i =0; 26i6n− 1 (76)

Using Equation (74), P2; : : : ; Pn−1 can be solved. The numerical results given by using 5 equal
intervals (n=6) and 10 equal intervals (n=11) are shown in Table VII. It can be seen
that the present numerical solutions give accurate solution at the outlet end of the reactor
(x=L or X =1) even when n=6. It can be checked that e0 and e1 are zero because of
Equation (73). Furthermore, the equations that need to be solved are fewer (only n−2) for
the present method. It can be seen from Table VII that if the Legendre–Gauss points are used,
more accurate results can be obtained even when n=6.

9. CONCLUSIONS

In this paper, a more complete methodology to impose the given boundary conditions by
modifying the weighting coe�cient matrices is presented. The boundary conditions are satis�ed
exactly by the interpolated solutions. The following �ndings are observed.

(1) The modi�ed weighting coe�cient matrices can be calculated easily. The present al-
gorithms would be equivalent to the collocation method employing trial functions that
satisfy the boundary conditions exactly if the same essential sampling grid points are
used. However, the present method saves the trouble in constructing the trial functions
that satisfy the given boundary conditions.

(2) It is found that the numerical results only depend on the essential sampling grid points
(where the di�erential quadrature analogous equations of the governing di�erential
equations are established). Hence, only the essential sampling grid points should be
chosen carefully. The auxiliary sampling grid points can be arbitrary as long as they
do not create numerical stability problems in evaluating the weighting coe�cients. In
addition, the boundary points should be included in either the essential or auxiliary
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sampling grid points to facilitate the construction of the di�erential quadrature analo-
gous equations of boundary conditions.

(3) The numerical results will also be equivalent to the conventional di�erential quadrature
method by dropping the di�erential quadrature analogous equations of the governing
di�erential equations at the auxiliary sampling grid points and replacing them with the
di�erential quadrature analogous equations of the boundary conditions.

(4) As the present method is equivalent to the collocation method, the derived matrices
do not have extra singularity. As a result, there will be no extra zero eigenvalues.
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