INT.].MATH.EDUCJ&H.TECHNOL”1994,VOL.25,N0.4,481—490

Using MATLAB as a programming language
for numerical analysis

by JOHN H. MATHEWS
Department of Mathematics, California State University Fullerton, USA

and KURTIS D. FINK

Department of Mathematics,
Northwest Missouri State University, USA

(Received 11 February 1993)

Today’s software offers more for numerical analysis than just programming.
The software MATLAB can be used to do things the traditional way; writing
loops; branching using logical decisions and invoking subroutines. Now a larger
programming environment is available; graphics and built in subroutine lib-
raries. These features are influencing the way numerical analysis is taught.
MATLARB is based on lists and many algorithms can be streamlined by taking
advantage of this structure. Graphical output for interpolation, curve fitting and
the solution of differential equations is easily produced by manipulating these
data structures. This article illustrates how MATLAB can be used in a numerical
analysis course to enhance the teaching of: Newton’s method, Gaussian
elimination, Chebyshev approximation, least squares polynomials, error analysis
for numerical differentiation, adaptive quadrature, Runge—Kutta methods, and
the solution of Laplace’s equation. Our students have enjoyed MATLAB, and
had a better experience computing with it. They were able to explore more
algorithms given in the textbook and use several state of the art algorithms that are
built into MATLAB.

1. 2-D Newton-Raphson method
'To solve the nonlinear system 0=Ff,(x, y), 0=f,(x, ¥), given one initial approxi-
mation (P, go) and using Newton—Raphson iteration. The power of Matlab enables
one to easily define the vector function F(X)=[f,(x,y), f,(x,¥)] and its Jacobian
(which is a matrix function).

Example 1. Solve the nonlinear system 0 =x%—2x—y +0-5 and 0 =x2 + 4y* —4.
Place the above mentioned functions in the M-files; F.m and J.m, respectively.

function Z = F(X)
x = X(1); y = X(2);
Z=[x.A2 -2.*x -y + 0.5, x.A2 +4.*y.A2 - 4]';
function W = J(X)
x = X(1); y = X(2);
W=[(2.*x - 2) (-1);
2.*x) 8.*y)1;

482 J. H. Mathews and K. D. Fink

Create the following subroutine in the M-file new2dim.m.

function [PO,Y0,err,P] = new2dim(F,J,P0,delta,epsilon,maxl)
P=P0; YO = feval(F,PQ);
for k=l:maxl,

dF = feval(J,P0);

if det(dF) == 0, dP = [0 @]; else dP = (dF\Y®)'; end

Pl = P - dP; Y1 = feval(F,P1);

err = norm(dP); relerr = err/(norm(P1)+eps);

PO = P1; Y0 = Y1; P = [P;P1];

;f (err<delta)l(relerr<delta)|(abs(Y1l)<epsilon), break, end
en
YO = YO';

To solve the nonlinear system execute the statements:

PO = [2.0 0.25]; maxl = 40;

delta = le-12; epsilon = le-12;

[ro,F@,err,P] = new2dim('F','J',P0,delta,epsilon,maxl);
' pCk q(k)', P

'The solution is P = ', PO

'FCP) = ', FO

'"The error estimate for P is %',disp(err)

Obtain the following results: (The graphics, Figure 1, is optional.)

Graphical presentation of the Newton-Raphson iteration.

0.34-
0.33
—p@Q a(kd . 0.32
2.0000000000000 ©.2500000000000 03
1.9062500000000 ©.3125000000000 OZ:

1.9006905430712 0.3112125468165 0.28
1.0006767264649 0.3112185654047 O
1.9006767263671 0.3112185654193 .| / 1IN
0.24 : i : : : :

188 19 192 194 19 198 2 202

Figure 1.
The solution is:
P= 1.90067672636707 ©.31121856541929
F(P) = 0.00000000000000 ©.00000000000000

The error estimate for P is
+ 9.896e-11 + 9.896e-11

2. Gauss—Jordan method
To construct the solution to AX= B, by reducing the augmented matrix [4, B] to
diagonal form. Although MATLAB can solve linear systems, this subroutine is
short and teaches the powerful row selection operation of MATLAB. A pivoting
strategy can easily be added to make it more robust.

Using MATLARB for numerical analysts 483

Example 2. Solve the linear system

15 4 =3\ /x —4
48 4 0| [x 8
130 2 |x]| |-
1 47 2/ \x 10

Store the subroutine gaussj.m in an M-file.

function X = gaussj(A,B)
[n n] = size(A);
A= [A";B']";s X = zeros(n,1);
for p = 1:n,
for k = [1:p-1,p+1:n],
if A(p,p)==0, break, end
ACk,:) = ACk,:) - ACk,p)/ACp,p)*ACp,:);
end
end
X = AC:,n+1)./diag(A);

To solve the linear system execute the statements:

A=[1 5 4 -3;
4 8 4 0;
i 3 0o -2;
1 4 7 2];
B = [-4; 8; -4; 10];
X = gaussj(A,B);
'The solution to AX = B is displayed as X* =', X'

Obtain the results:

The solution to AX = B is X =
3 .11 2

3. Least squares polynomial
To construct the least squares polynomial of degree M:

Pyx)y=cxM4c,xM U dep_px3 ey 18 Fepxtcaran
that fits N data points.

Example 3. Find the least squares parabola that fits the points
(_3»3)) (_2)2)) (_1’ 1'5)y (O) 1); (1) 1)) (2’15)r (3)3)) (4’5)

The built-in MATLAB routine C=polyfit (X, Y, 2) will find the coeffictents
C=[c,, ¢5, €3], then polyval (C, x) evaluates P,(x). Type the commands:

x=[-3 -2 -1 0 1 2 3 4]1;
y=[3 2 1.5 1 1 1.5 3 5];
C = polyfit(X,Y,2);

F = polyval(C,X); E = Y-F;

Xs = -4:0.05:5; Ys = polyval(C,Xs);
plot(X,Y,'0",Xs,Ys);

'y = P(x) = cC1)xAM + c(2)xM-1 +...+ c(M)x + c(M+1)'
'The coefficients are stored in the array C = '
disp(C')

' x(k) y(k) P(x(k)) error’
disp([x;y;polyval(C,x);y-polyval(C,x)]")

484 J. H. Mathews and K. D. Fink
Obtain the following results (Figure 2):

Yy = P(x) = cCLOXAM + CC2)XAM-1 +...+ c(M)x + c(M+1)
The coefficients are stored in the array C =

0.2500 -0.0238 0.8869

(k) __y(k) __P(x(K)) __error
-3.00 3.0 3.2083 -0,2083 I
-2.00 2.60 1.9345 0.0655 AP\
-1.00 1.5 1.1607 ©.3393 N1 0 NP
0.00 1.0 0.8869 0.1131 b 2N
1.00 1.60 1.1131 -0.1131

2.00 1.50 1.8393 -0.3393 Pl
3.60 3.80 3.0655 -0.0655 R
4,00 5.00 4.7917 0.2083 Figure 2.

Least squares polynomial: y = P(x)

NI

wn
:
- ..

............................

..

YA I

ob=-
-
Y
w
&~
2}

4. Chebyshev approximation

"To construct the Chebyshev interpolating polynomial Py(x) of degree N over the

interval [—1, 1], based on the nodes
2k4+ 1)
xk=cos(((2N—+;)—), for k=0,1,...,N

MATLAB’s polynomial fit routine is used to construct this polynomial. Since the
abscissae must be supplied to the polyfit subroutine, this emphasizes the dependence
on thé Chebyshev nodes. A classroom exercise is to compare these results with
Lagrange interpolation based on equally spaced nodes._

Example 4. Construct the Chebyshev approximation polynomial P,(x) for
J(x)=exp(x) over [—1,1]. Enter the commands:

n=4;

K = 0:n;

X = cos((2*K+1)*pi/10); % Generate the Chebyshev abscissas.
Y = exp(X); % Evaluate f(x) at each abscissa.

C = polyfit(X,Y,n); % Compute the collocation polynomial.

X1l = -1:0.01:1;
Y1l = exp(X1);;
P = polyval(C,X1);
plot(X,Y,'or',X1,P,'-",X1,Y1,'--");
Z = zeros(1l,n+l);
plot(X,Z,'o0’ ,X1,Y1-P,'-");
'The Chebyshev polynomial has been rearranged in ordinary form.';
'The coefficients of this ordinary polynomial are:*, C

Obtain the following results (Figure 3 (a), (b))

The Chebyshev polynomial has been rearranged in ordinary form.
The coefficients of this ordinary polynomial are:

0.0434 0.1773 0.4996 0.9973 1.0000

Using MATLAB for numerical analysts 485
Comparison of exp(x) and P(x) 6 x104 The error: cos(x) - P(x)

P | W N\

25 /
2 NN

=15 > .2 \
1 AN \
0.5 b | 5 el /

0 -8
-1 -08 06 04 02 0 02 04 06 08 1 -1 08 06 04 02 0 02 04 06 08 1
X X

@) Figure 3. @

5. Error analysis for numerical differentiation
For the differentiation formula

, x+h)y—f(x—h
7y LEERZTEZR | iy
the optimum step size is
e 3eps\/?
“\ m
and
eps mh?
<224 7
B, Il < B2 47

is the error bound, where eps is machine epsilon and | f(3)x)] < m. Investigation of the
actual error and theoretical error bound is a useful exercise. Only a handful of
MATLAB commands are necessary to carry out this investigation.

Example5. Usef(x)=cos (x) and compute approximations for f'(0-8). Compare
with the true value f'(0-8) = —sin (0-8). First, store the function:

function z = f(x)
z = cos(x);
To carry out the investigation type:
X=0.8; m=1;
hopt = (3*eps/m)A(1/3); emin = eps/hopt + m*hoptA2/6;
a = hopt/10000; b = 3.44*hopt; ¢ = @; d = 5.25%emin;
H = a:(b-a)/150:b; B = eps./H + m*H.A2/6;
E = abs(- sin(x) - (f(x+H) - f(x-H))./(2*H));
axis([a b ¢ d]); plot(H,E,H,B);
Observe from the graph (Figure 4), that the optional step size is the minimum
point of the smooth curve and the actual error incurred with step size A is the jagged
curve. This shows how close the theoretical error bound matches the real situation.

6. Adaptive quadrature using Simpson’s rule
To approximate the integral

B M h
J fx)dx~ kzl ’3—k[f(x4k Za) F 4 (g -3) + 2f(x 45— 2) + 4 (x4x— 1) Hf(x40)]
4 -

486 J. H. Mathews and K. D. Fink

20 x10-10 |E(f.h)] <= eps/h + m h*2/6

o 10

05

0.0

h «10-5

Simpson’s rule is applied with 4M subintervals Xax—a+;=Xg4-a+jh; for each
k=1,2,...,Mandj=1,.. 4.

Example 6. Use adaptive quadrature to integrate f(x) =13 (x—x?) exp (— 3x/2)
over [0, 4].

function y = f(x)
y = 13.%(x - x.A2).%exp(-3.*x./2);

Store the first subroutine in the M-file; aqustep.m

function [quad,errb,cnt] = aqustep(f,a,c,b,fa,fc,fb,srd,tol,lev)
if lev > max1,

disp('Beware, recursion level exceeded!’);

quad = sr@;

else
h = (b - a)/2;
cl = (a + ¢)/2; ¥ Determine midpoints cl, c2
c2 = (c + b)/2; % for [a c] and [c b].
fl = feval(f,cl); % Compute new function values
f2 = feval(f,c2); % f(cl) and f(c2).
srl = h*(fa + 4*f1 + fc)/6; % Simpson's rule for [a,c].
sr2 = h*(fc + 4*f2 + fb)/6; % Simpson's rule for [c,b].

quad = srl + sr2;
errb -zabs(srl + sr2 - (h*(fa + 4*fc + fb)/3))/10;
cnt = 2;
err = abs(quad - sr@)/10;
% Recursively refine the subintervals if necessary.
if err > tol,
tol2 = tol/2;
[sri,errbl,cntl] = ...
AQuStep(f,a,cl,c,fa,fl,fc,srl,tol2,lev+l);
[sr2,errb2,cnt2] = ...
AQuStep(f,c,c2,b,fc,f2,fb,sr2,tol2,lev+l);
quad = srl + sr2;
errb = errbl + errb2;
cnt = cnt + cntl + cnt2;
end
end

Using MATLAB for numerical analysis 487

Store the second subroutine in the M-file; aquad.m

function [quad,errb,cnt] = aquad(f,a,b,tol)

¢ = (a+ b)/2; ¥ Starting initialization
fa = feval(f,a); ¥ which is required before
fb = feval(f,b); % recursively calling the
fc = feval(f,c); % subroutine Aquadstep.

lev = 1; sr@ = inf; errb = @

% Now perform adaptive quadrature by recursive

¥ programming and using the subroutine aqustep.
{quad,errb,cnt] = aqustep(f,a,c,b,fa,fc,fb,srd,tol,lev);
cnt = cnt + 3;

To integrate f(x) in Example 6 execute the statements:

a=0; b=4; toler = 0,00001;

[quadl,err,n} = Aquad('f',a,b,toler);

Mx2 = ' quadrature value +- error bound', [quadl err]
'The number of subintervals required was m = ', (n-1)/4
Mx4 = 'The number of function evaluations was n= ', n

Obtain the results:

quadrature value +- error bound
~1.54878823412532 0.00000296808616

The number of subintervals required was m = 20
The number of function evaluations was n = 81

The program can be modified to obtain a graph of the subintervals used (Figure 5):

Adaptive quadrature.

7. Runge-Kutta method of order 4 for systems
To approximate the solution of the initial value problem Z'=F(t,Z) with
Z(a)=Z, over [a, b]. MATLAB vector functions enables us to use the Runge-Kutta
formula that is taught in the one dimensional case.

Example 7. Solve
%2 2

x’:x—xy——l—o— and y’=xy—y——%

488 J. H. Mathews and K. D. Fink

with x(0) =2 and y(0)=1 over the interval [0, 15]. First, place the above formulas in
the vector function F(t, Z):

function W = Fn(t,2)

X =Z2(1); y=1Z(2);
W= [(x - x*y - xA2/10), (x*y - y - yr2/20)];

Then store the following subroutine in the M-file; rks4.m

function [T,Z]} = rks4(Fn,a,b,Za,m)
h= (b-a)m;T=zeros(i,m+l);
Z = zeros(m+l,length(Za)); T(1) = a; Z(1,:) = Za;
for j=1:m,
tj = T(3)s Zj = 2(j,:);
K1 = h*feval(Fn,tj,Zj);
K2 = h*feval(Fn,tj+h/2,Zj+K1/2);
K3 = h*feval(Fn,tj+h/2,25+K2/2);
K4 = h*feval(Fn,tj+h,Zj+K3);
Z(j+1,:) = Zj + (K1 + 2*K2 + 2*K3 + K4)/6;
J(j+1) = a + h*j;
en

To solve the system of differential equations type:

a = 0; b=15; m = 150;

Za = [2 ‘1];

[7,2] = rks4('Fn’,a,b,Za,m);

Pw [12']"; X =2(:,1); Y =12(:,2);
points = P(1:19:1ength(P),:);
plot(X,Y,’'g"');

'Runge-Kutta solution.’

"t(k) x(k) y(k)'

disp(points)

Obtain the results (Figure 6): 7

Runge-Kutta solution, s Runge-Kutta solution to ' = F(t2)
409 x(K) y(k), : - :

0.0 2.0000 1.0000

1.0 1.1116 1.6907

2.0 0.6005 1.2786

"3.0 0.5621 0.7808

4.0 0.7586 ©0.5293

5.0 1.1486 0.4864

6.0 1.5550 0.6836

7.0 1.4591 1.1518

8.0 - 0.9643 1.3293

9.0 0.7257 1.0429 : : : :
1@ . 0 0 . 7547 6 . 7560 0o 0.0 0.5 1.0 15 20
11.0 ©0.9582 0.6257 - ‘ X
12.0 1.2397 0.6697 Figure 6.
13,0 1.3669 10,8953
14.0 1.1673 1.1349
15.0 ©.9122 1.1039

Using MATLAB for numerical analysis 489

8. Laplace’s equation
To approximate the solution of u,,(x, y)+u,(x,y)=0 over R={(x,y): 0<x<a,
0<y<b} with boundary conditions u(x,0)=f,(x), u(x,b)=f,(x) for 0<x<a and
u(0,y) =f3(y), u(a, y)=f,(v) for 0<y<b. Here the three-dimensional capabilities of
MATLAB come into play. We no longer need to settle for a table of values for our
numerical experiment, but can easily obtain a 3-D representation of the solution.

Example 8. Use finite difference method to solve u,,(x, y) +u,,(x,y=0 over
R={(x,y): 0<x<4, 0<y<4} with u(x,0)=F,(x)=20, u(x,b)=f,(x)=180 for
0<x<4 and u(0,y)=f3(y)=80, u(a,y)=f,(y)=0 for 0<y<4. First store the
functions:

function z = fi(x) function z = f2(x)
z = 20; z = 180;
function z = f3(y) function z = f4(y)
z = 80; z = 0;

Then store the following subroutine in the M-file; dirich.m

function U = dirich(f1,f2,f3,f4,a,b,h,tol,max1)
n = fix(a/h)+1l; m = fix(b/h)+1;
ave = (a*(feval(fl,0)+feval(f2,0)) ...
+ b*(feval(f3, O)+feval(F4 O)))/(Z‘a+2'b),
U = ave*ones(n,m);
for j=1l:m,
g(l.j) = feval(f3,h*(j-1)); U(n,j) = feval(f4,h*(j-1));
en
for i=1:n,
g(i »1) = feval(fl,h*(i- 1)), u(i,m) = feval(f2,h*(i-1));
en
U(1,1) = (UQ1,2)+U(2,1))/72; u(i,m) = CUC1,m-1)+UC2,m))/2;
U(n,1) = (UCn-1,1)+U(n,2))72; Uln,m) = (U(n-1,m)+U(n,m-1))/2;
w = 4/(2+sqrt(4-(cos(pi/(n-1))+cos(pi/(m-1)))A2));
err = 1; cnt = 0;
while ((err>tol)&(cnt<=maxl))
err = 0;
for j=2:(m-1),
for i=2:(n-1),
relx = ...
w*(UCL, J+1)+U(,5-1)+U(i+1,3)+ U(1-1,J) 4*U(i,3))/74;
U(i,j) = u(i,jd) + relx;
if (err<-abs(re1x)), err-abs(relx), end
end
end
cnt = cnt+l;
end

To solve the problem PDE execute the statements:

a=4.0; b=4.0; h=20.5;

tol = 0.001; maxl = 25;

U = dirich('f1','f2’, 'f3' 'f4',a,b,h,tol,max1);
'The solution to Laplace s equation.

W = rot9o(l); disp(W)

mesh(U);

The solution to Laplace's equation.

130
80

490

Using MATLAB for numerical analysis

Obtain the following results (the graph of which is shown in Figure 7):

180.0000
125.8208
102.1116
89.1730
80.5314
73.3017
65.0524
51.3928
20.0000

MATLAB has widespread accessibility for educational instruction and is
available in an inexpensive student version. Its structured programming style is easy
for students to learn and resembles FORTRAN or Pascal. Graphical capabilities
gives students visual understanding of their problems. This portrays an invaluable
sense of realism and enjoyment in numerical mathematics. Students are empowered
by this new tool of graphical presentation and can explore details that were

180.0000
141.1717
113.4527
94.0492
79.6509
67.6235
55.5153
40.5192
20.0000

180.0000
145.4135
116.4780
93.9203
76.3993
62.0262
48.8665
35,1688
20.0000

180.0000
144.0043
113.1256
88.7548
69.9998
55.2154
42.7563
31.2895
20.0000

180.
137.
103,
.9734
.6298
.07%94
.6540
.2333
.0000

0000
4780
2653

The solution to Laplace's equation.

9. Conclusions

180.0000
122.6423
84.4842
60.2438
44.4665
33.8182
26.5471
21.9899
20.0000

previously only possible by looking at pictures in a textbook.

A complete set of algorithms are available which supplement the text ‘Numerical
Methods; for Mathematics, Science and Engineering’. Inquiries can be made
directly to the author by surface mail or the E-mail address mathews@fullerton.edu.

-

180.0000
88.6070
51,7855
34.0509
24.1743
18.1798
14.7265
14.1791
20.0000

0

[

000000000

