SVD:
Singular Value

Decomposition




Motivation A any matrix

with complete set of e-vectors

_ A=SAS™

A:any matrix A _ Al

A=LU e

LUx—b X=SA"S™b

Ux=1y A symmetric matrix
A any matrix A=QAQ'
A=UzV' A" =QAQ’
Al=vsUT Xx=QA™Q'b
x=VZ'U'b




Ideas Behind SVD There are many choices of
basis in C(AT) and C(A), but we

want the orthonormal ones

= Goal: for A,
o find orthonormal bases for C(AT) and C(A)

orthonormal
basis in C(A)

orthonormal
basis in C(AT)




SVD (2X2)

Assumer =2

unit vectorsin C(A'):v, Lv,
AND we want their images in C(A) : Av, L Av,

Av Av Av,  Av
u — 1 — 1 u — 2 2
1= Tau] = o 102 = A T

~ -
A[Vl VZ]:[O-lul O'zuz]:[u1 uz]{ : >
2

AV =UX




SVD 2x2 (cont)

AV =U Another diagonalization using
4 . 2 sets of orthogonal bases
A=U2V " =UxV

Compare | When A has complete set of e-vectors,
we have

AS=51 , A=51S5"

but S in general is not orthogonal

When A is symmetric, we have
A=0AQ7




Why are orthonormal bases good?

( )*=()'
Implication:
o Matrix inversion
A=UxV'
1 TYL 4 T
- At=UsvT) =vziU
A=UzV'
Ax=Db
(UsVT Jx=b

( ) ..diagonal system

2 7x)
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More on U and V

ATA=VZ'U'UZV' =V

Similarly,

UT

AAT =UZV'VZ'UT =U

[Caution]: they (u; and v;) may differ in signs ...
Find v, first, then use Av, to find u, ° ¢ ®




SVD: A=UXV!

The singular values are the diagonal entries
of the £ matrix and are arranged in
descending order

The singular values are always real (non-
negative) numbers

If A IS real matrix, U and V are also real




Example (2x2, full rank)
A:{ 21 ﬂ
wacly el

e elafucls
e ol -

TV R EACRICE ESCRE ALY
0 10 V2]-1/v2 9V2)




SVD Theory

AV =UX

— Av. i =ou;,

J:]_’Z’...’r

If 6;=0, Av;i=0—v; Is In N(A)
o The corresponding u; in N(AT)
[UTA=2VT=0]

Else, v, in C(AT)
o The corresponding u; in C(A)
#of nonzero ;= rank
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‘ Example (2x2, rank deficient)

2 2 ™ basis | Ly = 1|1
A:{1 1_,rzl,C(A )baSIS.L}Vl_ﬁL}

Av, = o,U,
2 2111 12
2 2o 5 o =10
L MJ "%m k
O
111 o
V, Lv, >V, e N(A) > Av, =0—> Vv, =— .

J2 -1

T T T 11
u, Lu ->u,eNA ) > AU =0->UuA=0>Uu=—F

2 2 T_i21\/ﬁo
2 a2 1]

1 =
1

'

O

—
=

|

L

=
(@)
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Example (cont)

2 2
:UZVT:L
1 1 J5

A=UzVT =[u, u,

.

0,

: Of v,
10 0]v,

T

10V

0

1}\@ o_i{l 1}
-2] 0 0]v2[1 -1

:|:01u1

T
Vi

Problem: Sign and
correspondence (if more
than one u, for N(A))
matter?

Bases of N(A) and N(AT) (u, and v, here) do not contribute
the final result. The are computed to make U and V

orthogonal.




 Extend to A

Av, =cu,1=1---r

A[Vl eV : [ul

Basis of N(A)
Dimension Check

)

Basis of N(AT




‘ Extend to A

mxn (CON)
o _
A[Vl Vi Vi Vn]:[ul u. U, --Upg]
O-r
- O_
S
- V.T ’
A=|louy, -+ ou, 0---0] . =oUV, +---+ouVv
r+1
Bases of N(A) and N(A") | ;| They are useful only for

do not contribute - " - nullspace solutions
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110
A=
{011

V:IA'A

1
=1
0

P N P

P O

(nullspace)

:

110
11

|

:|’ = 2’ A2><3V3><3 = U 2><222x3

1[3] 3v/2 |1
==L o =3
o)
111
—— =1
ﬁH%
P EET(EEEN RE
f _\[‘ 1 _1_4_
J6 ﬁ:_ﬁ_.:'
C(AT) N(A) A
SR ECE S
_\/El -1 1 \? 1
FoE
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y = 2’ A3><2V2><2 — U3><323><2

o o o
1 J6
2 1] Au=ol2|="2 ] 2| =35 201 =3
1 1 1 1
| It’s alright if we fill N(AT) with 0 if
1l AV, = =1 0 | e2=1 we only care about C(AT) and C(A),
J2|1 | -1 the ones correspond to nonzero c’s
111 Av, =0 basis of N(A")...obtained in e - vector of AA", or ortherwise
J2|-1 - ] _ _
Lo] fe &\ #] 8
—= =& 0] & 1
1 \/E AL L) L
LY Yo VoL EL |
C(AT)  C(A) N(AT)
1 0] | T3

111 1
ﬁL —J

B - L - 16

Si- | © Sl
sl- Bl G-



Summary

SVD chooses the right basis for the 4 subspaces
AV=UZ
o Vj...v,:. orthonormal basis in R" for C(AT)

O Vigq-.-Vy N(A)
a Up...U in R™  C(A)
O Upq..-Up N(AT)

These bases are not only 1, but also Avi=c;u.
High points of Linear Algebra

o Dimension, rank, orthogonality, basis, diagonalization, ...
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SVD Applications

Using SVD in computation, rather than A, has the
advantage of being more robust to numerical error

Many applications:
o Image compression

o Solve Ax=Db for all cases (unique, many, no solutions; least
sguare solutions)

o rank determination, matrix approximation, ...

SVD usually found by iterative methods (see
Numerical Recipe, Chap.2)
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SVD and Ax=b (m>n)

Check for existence of solution

UV 'x=b—>3XV'x=U"b
R

>z=d
If o, =0butd, =0,
solution does not exist
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Ax=b (inconsistent)

R Y i -
B3

5|1
\* No solution!




Ax=b (underdetermined)

5 )42 AR

2] [242 " _Vz_i{l 1}2\5 _H
2, — 0 — Xparticular — _\/E 1 -1l o B




Search: [pseudo [
‘ PSCUdO IﬂV@fSC Mow wou can have our dictionary -1
<S€C7.4, p395> pseu-do f Listen: [ sss'ds ]
ady.
[l The I‘Ole Of A: False or counterfeit; fake.

n Takes a vector v; from row space to cu; in the
column space

= The role of AL (if it exists):

0 Does the opposite: takes a vector u;, from column
space to row space v,
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Pseudo Inverse (cont)

While A may not exist, a matrix that takes u. back
to v/c; does exist. It is denoted as A*, the pseudo
Inverse

A*. dimension n by m

A*uizivi fori<r and A'u =0 fori>r
Oj

A"=V_>" U!

NXN= Nxm mxm
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‘ Pseudo Inverse and Ax=Db

AX =D
X=Ab=VZ'U'Db

= Full rank: A1 exist; At is the same as A1

= Underdetermined case: many solutions, but will find the one with
the smallest magnitude |x|

= Overdetermined case: find the solution that minimize the error
r=|Ax-Db|, the least square solution

= [proofs given below]
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‘ [Proots tfrom NR-1]

— . E . . |'_J.
Proof: Consider [x + x|, where x" lies in the nullspace. Then, if W™ denotes
the modified inverse of W with some elements zeroed,

V-w .Ut . py

X + x|

= v w vt . p+ vy

(2.6.8]

=W Ut b VY

Here the first equality follows from (2.6.7), the second and third from the orthonor-
mality of V. If vou now examine the two terms that make up the sum on the
right-hand side, vou will see that the first one has nonzero j components only where
w; # 0, while the second one, since x” is in the nullspace, has nonzero j components
only where w; = 0. Therefore the minimum length obtains for x’ = 0, q.e.d.
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‘ [Proots tfrom NR-2]

The proot'1s similar to (2.6.8): Suppose we modify x by adding some arbitrary
x'. Then A - x — b is modified by adding some b" = A - x". Obviously b’ is in
the range of A. We then have

A-x—b+tb

U-W-VI (v.w . U" by — b+ 1|

U-W-w vl —1).b+p

(2.6.10)
U. [[\’#’ Wl - u?l . p ot b"] | & 01U

W- W' 1. u" b UT b

Now, (W - W~ — 1} is a diagonal matrix which has nonzero j components only for

. Ty . - . I .
w; = U, while U” b has nonzero j components only for w; # 0. since b™ lies in the

T . - !
range of A. Therefore the minimum obtains for b" = 0, g.e.d.
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Ex: full rank

a2 IS

A:UZVT=L1) ﬂ{zf \oﬁ}{_lif@ 1//\@

Ax=b—->UZV'x=b— x=Vdiagl/c)U'b

e 2T T M
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under-determined

Ex

B
1 _ — _
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Under-determined (cont)

{x+y =2

y+12Z

=0

CompleteSolution :

2

X=|0]|+cl -1

0/

x = A"b gives a particular with smallest | X

1)
Geometrically,a line in R®

1)

| |
/ 0.)|II\J wlhv wls
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Ex: over-determined

1 0
A=|1 1|b=|2 ||r=2AV,,=U,.2,,
0 1 -1
1 0] |+ L J3 01
1 1= % 0 ' 1|—
6 J211 -1
0 1 L 2
0 % = _
A=UxV'
A" =vzU' ﬁ

Will show this need not
be computed...




 Over-determined (cont)

x=VZ'U'b
1 2 1"1‘
11 1T+ J6  J6 6
S R
1 -1 1 2
V2 <HREE>
- -
] T J6
A1 2
J2 11 -1 1
- - X+2y-2D
11 1722 F' Same
J2(1 —1]lJ2| |2 /result..
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Ex: general case, no solution

2X+2y =38
X+y=3
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Matrix Approximation

A =UZV'
2. :therank i version of X (by settinglast m—1i o's tozero)
A :thebest rank i approximation to Ain the sence of Euclidean distance

T T T
A=oUyVv, +o,u,V, +---+o U.V_
Storage save :rank one matrix (m - n) numbers
Operationsave:m+n

making small ¢’s to zero and back substitute
(see next page for application in image compression)
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‘ Image Compression

= As described in text p.352 -

= For grey scale images: mxn bytes

After SVD, taking the most significant r terms:

A=ocuyv, +o,uV, +---+o.uv

r-r-r

= Only need to store r<x(m+n+1)

Original

64X64
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