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Singular value decomposition

Suppose A ∈ Rm×n with rank(A) = r. The singular value
decomposition (SVD) of A is to

choose orthogonal basis v1, · · · , vr of row space of A, and

choose orthogonal basis u1, · · · , ur of column space of A

so that Avi = σiui, σ1 ≥ σ2 ≥ · · · ≥ σr > 0
In matrix form the equations Avi = σiui become AV = UΣ.

The matrix A can be written as

A = UΣV T

where U ∈ Rm×r and V ∈ Rn×r have orthonormal columns.
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Application example
Singular value decomposition has many applications in signal
processing and control. We consider an example of image
compression.

a (black and white) digital image is a matrix of pixel values

each pixel contains the grey level

each picture may have 512 pixels in each row and 256 pixels
in each column, a 256 by 512 matrix

usually in applications large amount of images need to be
stored and processed

compression needed to reduce data to manageable size
without losing picture quality

Linear Algebra: Lecture 19 Singular Value Decomposition NCTU UEE1101 Spring 2010 19-3



Outline Singular value decomposition 2 by 2 case SVD Theorem Similar matrices Jordan form

Low rank approximation

Suppose A ∈ R256×512 is a digital image and we have SVD for A as

A = UΣV T .

Basic idea:

Â1 = σ1u1v
T
1 gives the best rank 1 approximation to A

compression ratio: (256)(512)
(1+256+512) , roughly 170 : 1

Âk =
∑k

j=1 σjujv
T
j is the best rank k approximation to A

Let approximation error E = A− Âk. The approximation is best in
the sense that

∑
i

∑
j |eij |2 is minimized.
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2 by 2 case

We will consider A ∈ R2×2 with rank r = 2, so A is invertible.

The row space C(AT ) = R2 and column space C(A) = R2.

We need

v1 and v2 orthonormal

Av1 and Av2 are perpendicular

u1 = Av1/‖Av1‖ and u2 = Av2/‖Av2‖

We want to diagonalize A but can not use eigenvectors: A may
not be symmetric so eigenvectors are not orthogonal and
eigenvalues may not be real.
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2 by 2 case
Putting together, with ‖Av1‖ = σ1 and ‖Av2‖ = σ2,

A
[
v1 v2

]
=
[
σ1u1 σ2u2

]
=
[
u1 u2

] [ σ1 0
0 σ2

]
.

In matrix form

AV = UΣ⇔ U−1AV = Σ⇔ UTAV = Σ.

diagonal matrix Σ contains the singular values σ1 and σ2

columns of U form an orthogonal basis for C(A)
columns of V form an orthogonal basis for C(AT )
(ATU = V Σ)
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Singular vectors

The singular vectors v1 and v2 are the eigenvectors of ATA with
eigenvalues σ2

1 and σ2
2:

ATA = (UΣV T )T (UΣV T ) = V ΣT ΣV T = V

[
σ2

1 0
0 σ2

2

]
V T .

The singular vectors u1 and u2 are the eigenvectors of AAT with
eigenvalues σ2

1 and σ2
2:

AAT = (UΣV T )(UΣV T )T = UΣT ΣUT = U

[
σ2

1 0
0 σ2

2

]
UT .
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SVD Theorem (2 by 2 case)

Theorem: The singular value decomposition of A ∈ R2×2 with
rank (A) = 2 has orthogonal matrices U and V so that

AV = UΣ ⇔ A = UΣV −1 = UΣV T .

where Σ =
[
σ1 0
0 σ2

]
contains the singular values σ1 > 0 and

σ2 > 0.
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Example
Find singular value decomposition of A =

[
2 2
−1 1

]
.

ATA =
[

5 3
3 5

]
eigenvalues σ2

1 = 8 and σ2
2 = 2

unit eigenvectors v1 = 1√
2

[
1
1

]
, v2 = 1√

2

[
−1

1

]
Av1 =

[
2 2
−1 1

]
1√
2

[
1
1

]
= 2
√

2
[

1
0

]
Av2 =

[
2 2
−1 1

]
1√
2

[
−1

1

]
=
√

2
[

0
1

]
A = UΣV T =

[
1 0
0 1

] [
2
√

2 0
0

√
2

] [
1/
√

2 1/
√

2
−1/
√

2 1/
√

2

]
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Interpretation of A = UΣV T

Consider the relation y = Ax.

By SVD we decompose the action of A into three simple steps:
rotation, scaling and rotation:

rotate (or reflection) by V T

scale along the axes

rotate by U

The action of A is to transform the unit circle to an ellipse.
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Interpretation of A = UΣV T
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Example

Find singular value decomposition of A =
[

2 2
1 1

]
.

rank(A) = 1

basis for row space v1 = 1√
2

[
1
1

]
basis for column space u1 = 1√

5

[
2
1

]
Av1 =

√
2
[

2
1

]
= σ1u1, so σ1 =

√
10

SVD: A = σ1u1v
T
1
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Example
It is customary to make U and V square. The matrices need a
second column.

v2 is perpendicular to v1 so choose v2 = 1√
2

[
1
−1

]
u2 is perpendicular to u1 so choose u2 = 1√

5

[
1
−2

]
v2 is in N (A) so Av2 = 0, so σ2 = 0
u2 is in N (AT )
SVD:

A = UΣV T =
1√
5

[
2 1
1 −2

] [ √
10 0
0 0

] [
1/
√

2 1/
√

2
1/
√

2 −1/
√

2

]
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Example
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SVD Theorem
Theorem: The singular value decomposition of A ∈ Rm×n,
rank(A) = r, has orthogonal matrices U and V so that

AV = UΣ ⇔ A = UΣV T = U1Σ1V
T
1 .

U =
[
U1 U2

]
∈ Rm×m, U1 ∈ Rm×r

V =
[
V1 V2

]
∈ Rn×n, V1 ∈ Rn×r

Σ ∈ Rm×n has the form

[
Σ1 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
and

Σ1 =

 σ1

. . .

σr

 , σ1 ≥ σ2 ≥ · · · ≥ σr > 0.
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Orthogonal bases for the 4 spaces

In the SVD A = UΣV T , the orthogonal matrices U and V contain
orthonormal bases for the four spaces associated with A.

columns of V1 is an orthonormal basis for C(AT )
columns of V2 is an orthonormal basis for N (A)
columns of U1 is an orthonormal basis for C(A)
columns of U2 is an orthonormal basis for N (AT )
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Proof of SVD Theorem
We have

rank(A) = rank(ATA) = r

ATA has r positive eigenvalues σ2
1, · · · , σ2

r

singular values σ1, · · · , σr are defined

From the equation
ATAvi = σ2

i vi (1)

orthonormal vectors v1, · · · , vr and thus V1 are defined

they gives a basis for the row space C(AT )

Choose orthonormal vr+1, · · · , vn as a basis for N (A).

Thus V2 and V are defined.
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Proof of SVD Theorem

From (1),

vT
i A

TAvi = σ2
i v

T
i vi ⇒ ‖Avi‖ = σi

AATAvi = σ2
iAvi

ui = Avi/σi, i = 1, · · · , r are orthonormal eigenvectors of
AAT and they form a basis of C(A), U1 is defined

Avi = σiui, i = 1, · · · , r

Choose orthonormal ur+1, · · · , um as a basis for N (A), which
defines U2.
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Similar matrices

Suppose M is an invertible matrix and B = M−1AM .

we say B is similar to A

if B is similar to A, then A is similar to B

in differential equations, the expression M−1AM appears
when we change variables: consider dx

dt = Ax and let x = Mz,
then

M
dz

dt
= AMz ⇔ dz

dt
= M−1AMz
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Invariance of eigenvalues
Fact: Suppose A and B are similar, and B = M−1AM . Then (a)
A and B have the same eigenvalues and (b) v is an eigenvector of
A implies M−1v is an eigenvector of B.

Proof: (a) We have

det(λI −B) = det(M−1) det(λI −A) det(M) = det(λI −A).

(b) Write A = MBM−1, then

Av = λv ⇔ MBM−1v = λv ⇔ B(M−1v) = λ(M−1v).

This shows that λ is an eigenvalue of B with eigenvector M−1v.
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Example

Consider the projection matrix A =
[

0.5 0.5
0.5 0.5

]
.

the eigenvalues are 1 and 0.

A is similar to Λ = S−1AS =
[

1 0
0 0

]
choose M =

[
1 0
1 2

]
, M−1AM =

[
1 1
0 0

]
choose M =

[
0 −1
1 0

]
, M−1AM =

[
0.5 −0.5
−0.5 0.5

]
every 2 by 2 matrix with eigenvalues 1 and 0 is similar to A
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Example
The matrix A =

[
0 1
0 0

]
is similar to any nonzero B of the form

B =
[

cd d2

−c2 −cd

]
.

eigenvalues of A are 0 and 0

rank(A) = 1
det(B) = 0, rank(B) = 1, trace (B) = 0.

B can not be diagonalized

A is the Jordan form of B

B = M−1AM where M =
[
a b
c d

]
with ad− bc = 1
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Similarity transformation

The formula B = M−1AM is called a similarity transformation
from A to B.

In the transformation, some things changed and some don’t.

Not changed Changed

eigenvalues eigenvectors
trace and determinant nullspace
rank column space
# of indep. eigenvectors row space
Jordan form left nullspace

singular values
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Example

Consider the Jordan matrix J =

 5 1 0
0 5 1
0 0 5

.

J − 5I =

 0 1 0
0 0 1
0 0 0

 has rank 2

eigenvalues 5, 5, 5 (algebraic multiplicity=3)

one indep. eigenvector (geometric multiplcity=1)

B = M−1JM has eigenvalues 5, 5, 5 and rank(B − 5I) = 2.

dim(N (B − 5I)) = 1 (one indep. eigenvector)
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Example

JT is similar to J with M =

 0 0 1
0 1 0
1 0 0


J is similar to every matrix A with eigenvalues 5, 5, 5 and one
(independent) eigenvector, i.e., there is an M such that

M−1AM = J

(this follows from the Jordan Form Theorem)
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Example
Consider the differential equation

dx

dt
= Jx =

 5 1 0
0 5 1
0 0 5

 x1

x2

x3

 ⇔ dx1
dt = 5x1 + x2

dx2
dt = 5x2 + x3

dx3
dt = 5x3

This is a triangular system and can be solved sequentially from the
last equation.

dx3
dt = 5x3 ⇒ x3(t) = x3(0)e5t

dx2
dt = 5x2 + x3 ⇒ x2(t) = (x2(0) + tx3(0))e5t

dx1
dt = 5x1 + x2 ⇒ x1(t) = (x1(0) + tx2(0) + 1

2 t
2x3(0))e5t

Remark: Generalization to Jordan matrix of size n is obvious.
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Jordan form
For every A ∈ Rn×n we want to choose M so that M−1AM is as
nearly diagonal as possible.

When A has n independent eigenvectors, M = S and
M−1AM = Λ is the Jordan form of A

In general, suppose A has s independent eigenvectors.

A is similar to a matrix with s blocks

each block is a Jordan matrix (called a Jordan block): the
eigenvalues on the diagonal and the diagonal above it
contains 1’s

each block accounts for an eigenvector of A
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Jordan Form Theorem
If A has s independent eigenvectors, then it is similar to a matrix
J that has s Jordan blocks on its diagonal: There is a matrix M
such that

M−1AM =

 J1

. . .

Js

 = J.

Each block in J has one eigenvalue λi, one eigenvector, and 1’s
above the diagonal: 

λi 1
· ·
· 1
λi


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Jordan form
Corollary: If A and B share the same Jordan form, then they are
similar
To see this:

M−1
A AMA = J = M−1

B BMB

⇒ MBM
−1
A AMAM

−1
B = B.

Note

Ak = M−1JkM

eAt = M−1eJtM

Jk and eJt are easy to compute

Remark: Numerical computation of M and J is not stable: a
slight change in A will separate the repeated eigenvalues.
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