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Singular value decomposition

Suppose A € R™*™ with rank(A) = r. The singular value
decomposition (SVD) of A is to
@ choose orthogonal basis vy, - - - , v, of row space of A, and
@ choose orthogonal basis u1, - ,u, of column space of A
@ so that Av; = oyu;, 01 > 09>+ >0, >0

In matrix form the equations Av; = o;u; become AV = UX.
The matrix A can be written as
A=UxvT

where U € R™*" and V € R™ " have orthonormal columns.
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Singular value decomposition

Application example

Singular value decomposition has many applications in signal
processing and control. We consider an example of image
compression.
@ a (black and white) digital image is a matrix of pixel values
@ each pixel contains the grey level

@ each picture may have 512 pixels in each row and 256 pixels
in each column, a 256 by 512 matrix

@ usually in applications large amount of images need to be
stored and processed

@ compression needed to reduce data to manageable size
without losing picture quality
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Low rank approximation

R256 X512

Suppose A € is a digital image and we have SVD for A as

A=UxVT,

Basic idea:
o A = olulvlT gives the best rank 1 approximation to A

@ compression ratio: %, roughly 170 : 1

o A, = Z?:l crjujvjr is the best rank k approximation to A

Let approximation error £ = A — /lk The approximation is best in
the sense that >, > le;]? is minimized.
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2 by 2 case

We will consider A € R?*2 with rank r» = 2, so A is invertible.
The row space C(A”) = R? and column space C(A) = R%
We need

@ v1 and vy orthonormal
@ Awv; and Awvy are perpendicular
o uy = Avi/||Avi|| and uy = Avy /|| Ava||

We want to diagonalize A but can not use eigenvectors: A may
not be symmetric so eigenvectors are not orthogonal and
eigenvalues may not be real.
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Jordan form

Outline Singular value decomposition 2 by 2 case SVD Theorem Similar matrices
A A P
2 by 2 case

Putting together, with ||Av;|| = o1 and || Avs|| = o2,
o1 O
Alvr v =[ou o | = w U2][0 02]-

In matrix form

AV =UY s U AV =2 s UTAV = 3.

@ diagonal matrix X contains the singular values o1 and o9
@ columns of U form an orthogonal basis for C(A)

e columns of V form an orthogonal basis for C(AT)
(ATU = V)
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Singular vectors

The singular vectors v and vy are the eigenvectors of AT A with
eigenvalues o7 and 03:

2
ATA = sV (wsvT) =velsy? = v [ ‘Bl 002 ] VT
2

The singular vectors u; and uy are the eigenvectors of AAT with
eigenvalues 0% and o3:

2
AAT = sV UsvhT = usTsuT = U [ o O ] uT.

0 o3
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SVD Theorem (2 by 2 case)

Theorem: The singular value decomposition of A € R?*? with
rank (A) = 2 has orthogonal matrices U and V so that

AV =UY = A=Uxv!1=vuxvT.

g1

whereEz[ 0 oy

oo > 0.

] contains the singular values o1 > 0 and
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Find singular value decomposition of A =

5 3
T A _
oAA—[35}

Example 5 o
-1 1

e eigenvalues 0? =8 and 03 = 2
@ unit eigenvectors v; = \/ig[}],vgz\%[_i}
2 2 1 1
SeERIEIH N
1
1

1
I
S
—
= o
1

°A”2=[—21 ?]%[_
s

oAzUEVT:[ H 1/v2 1/\/5]

—1/vV/2 1/V2
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Interpretation of A = UXV7

Consider the relation y = Ax.

By SVD we decompose the action of A into three simple steps:
rotation, scaling and rotation:

o rotate (or reflection) by V7
@ scale along the axes
@ rotate by U

The action of A is to transform the unit circle to an ellipse.
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Interpretation of A = UXV7

= 7A7
o T - T~ IS
VT x i U agtiy
T T ST T e
U2
~
o1
v ajiy
- N
|4 p

Figure 6.5 U and V are rotations and reflections. X is a stretching matrix.
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Example
. . .. 2 2
Find singular value decomposition of A = [ 11 ] .
@ rank(A) =1
1
i — L

@ basis for row space v = 7 [ 1 ]

basis for col N
® basis for column space ui = 7= | |
o A’l)lz\/§|: ? :| :alu1,5001:\/10

o SVD: A = alulv{
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Example
It is customary to make U and V square. The matrices need a
second column.
1
-1

. . 1 1
@ uo is perpendicular to uq so choose ug = VA

@ vo is perpendicular to v; so choose vy =

-

@ vy isin N(A) so Avg =0, so o3 =0
e uy is in N(AT)
e SVD:

e300 ]
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Example
Av1=mu1 I T
row space . — — — -
= column space
N 1 [1] -
N L
e i
"N #H |
o B e =
. v, =0
nullspace

nullspace of 4T

Figure 6.6 The SVD chooses orthonormal bases for 4 subspaces so that Av; = oju;.
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SVD Theorem

Theorem: The singular value decomposition of A € R""*"™,
rank(A) = r, has orthogonal matrices U and V so that

AV =UY & A=UxvT =ux, V.

0U=[U1 U2]€Rm><m,U1€Rm><r
OV:[‘/i %]GRan,VIGRan

@ ¥ € R™*" has the form 1 Orx(n—r) and
O(m—r)xr O(m—r)x(n—r)

01
b))

Il
2
V
)
[\]
AV
vV
Q
S
V
o
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Orthogonal bases for the 4 spaces

In the SVD A = ULV, the orthogonal matrices U and V contain
orthonormal bases for the four spaces associated with A.

@ columns of V; is an orthonormal basis for C(AT)
@ columns of V4 is an orthonormal basis for A/(A)
@ columns of Uj is an orthonormal basis for C(A)

o columns of Uy is an orthonormal basis for V(A7)
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Proof of SVD Theorem
We have

o rank(A) = rank(ATA) = r
o AT A has r positive eigenvalues 02, - - - , o2

@ singular values o1, -+ , 0, are defined

From the equation
ATAUZ‘ = O’?Uz‘ (1)

@ orthonormal vectors vy, - - , v, and thus V; are defined

e they gives a basis for the row space C(AT)

Choose orthonormal v, 41, -+ , v, as a basis for N/(A).

Thus V5 and V are defined.
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Proof of SVD Theorem

From (1),

o v AT Av; = o2vlv; = ||Av;| = oy

o AAT Av; = O'?A’Ui

® u; = Av;/o;,i =1,--- ,r are orthonormal eigenvectors of
AAT and they form a basis of C(A), U is defined

o A’Z)Z'ZO'iui,iZLH- , T

Choose orthonormal w41, -+, uy, as a basis for N/(A), which
defines Us.
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Similar matrices

Suppose M is an invertible matrix and B = M1 AM.

e we say B is similar to A
o if B is similar to A, then A is similar to B

e in differential equations, the expression M 1AM appears
when we change variables: consider fl—f = Az and let x = Mz,

then J J
MY —AMz o &= M'AMz
i dt

L O S O
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Invariance of eigenvalues

Fact: Suppose A and B are similar, and B = M~'AM. Then (a)
A and B have the same eigenvalues and (b) v is an eigenvector of
A implies M ~'v is an eigenvector of B.

Proof: (a) We have

det(M — B) = det(M 1) det(A — A) det(M) = det(\ — A).

(b) Write A= MBM™!, then
Av=2X v & MBM 'v=X v & BM 'v) =AM o).
This shows that ) is an eigenvalue of B with eigenvector M ~1v.
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Example
. — . 0.5 0.5
Consider the projection matrix A = [ 05 05 }

@ the eigenvalues are 1 and 0.

@ Aissimilarto A =S 1AS = [ (1) 8 ]

ochooseM:[1 0],M_1AM:[1 1]

1 2 00
10 -1 1 B 0.5 —-0.5
cochooseM—[1 O}M AM_[—O.S 0'5]

@ every 2 by 2 matrix with eigenvalues 1 and 0 is similar to A
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Example
The matrix A = [ 8 (1) ] is similar to any nonzero B of the form

2
B:[ C‘QZ d ]

@ eigenvalues of A are 0 and 0
e rank(A) =1
e det(B) =0, rank(B) = 1, trace (B) = 0.
@ B can not be diagonalized
e A is the Jordan form of B
a b

e B=M"1AM where M = [ . d] with ad — be = 1
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Similarity transformation

The formula B = M~'AM s called a similarity transformation
from A to B.

In the transformation, some things changed and some don't.

Not changed Changed

eigenvalues eigenvectors

trace and determinant nullspace

rank column space

# of indep. eigenvectors | row space

Jordan form left nullspace
singular values
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Example
510
Consider the Jordan matrix J = | 0 5 1
0 05
010
e J—5I=|0 0 1 | hasrank?2
0 00
@ eigenvalues 5, 5, 5 (algebraic multiplicity=3)
@ one indep. eigenvector (geometric multiplcity=1)
e B = M~'JM has eigenvalues 5, 5, 5 and rank(B — 5I) = 2.
e dim(N (B —5I)) =1 (one indep. eigenvector)
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Example
0 01
o Jl issimilarto Jwith M= 0 1 0
1 00

@ J is similar to every matrix A with eigenvalues 5, 5, 5 and one
(independent) eigenvector, i.e., there is an M such that

M YAM = J

(this follows from the Jordan Form Theorem)
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Example
Consider the differential equation
i 5107 [m M = 5y + 2o
$:J$= 051 o | & 2 = 515+ a3
0 O 5 xr3 % = 5$3

This is a triangular system and can be solved sequentially from the
last equation.

ddﬂt = 5x3 = x3(t) =3 O)e

Lo 0) + ta3(0))ed

(
TR =5rmat+ w3 = mo(t) = (22(0)
dzy 1(0) + tx2(0) + 1t2x3(0))e5t

(
v =dxr1+x9 = xl(t) = (33

Remark: Generalization to Jordan matrix of size n is obvious.
D .
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Jordan form
For every A € R™*" we want to choose M so that M ~'AM is as
nearly diagonal as possible.

When A has n independent eigenvectors, M = S and
M~YAM = A is the Jordan form of A

In general, suppose A has s independent eigenvectors.

@ A is similar to a matrix with s blocks

@ each block is a Jordan matrix (called a Jordan block): the
eigenvalues on the diagonal and the diagonal above it
contains 1's

@ each block accounts for an eigenvector of A
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Jordan Form Theorem
If A has s independent eigenvectors, then it is similar to a matrix

J that has s Jordan blocks on its diagonal: There is a matrix M

such that
J1

M YAM = =J.
Js

Each block in J has one eigenvalue );, one eigenvector, and 1's
above the diagonal:

L O S O
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Jordan form
Corollary: If A and B share the same Jordan form, then they are

similar
To see this:
M 'AM4 = J = Mgz'BMp
= MpM'AMsMz" = B.
Note

o AF =M-tJFM
o et = M~ledtM
o J* and e/t are easy to compute

Remark: Numerical computation of M and J is not stable: a
slight change in A will separate the repeated eigenvalues.
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