APPENDIX A

ANALYTIC DETERMINATION OF WEIGHTING COEFFICIENTS

The set of equations to be solved for the determination of the weighting coefficients has the form

$$\sum_{j=1}^{N} w_{i,j} X_{j}^{k-1} = (k-1)(k-2)\cdots(k-n) X_{i}^{(k-n-1)}$$

$$i,k = 1,2,\cdots,N \tag{A-1}$$

Here, the first-order weighting coefficients with three equally spaced grid points will be calculated analytically for demonstration. For the case considered, N=3, n=1, and i,k=1,2,3. Then, Eq. (A-1) becomes

For k = 1, one has from Eq. (A-2)

$$\sum_{j=1}^{3} \mathbf{w_{i,j}} \ \mathbf{X_{j}}^{0} = 0 \tag{A-3}$$

Eq. (A-3) can be expanded as

$$w_{11} + w_{12} + w_{13} = 0$$
 for $i = 1$
 $w_{21} + w_{22} + w_{23} = 0$ for $i = 2$ (A-4)
 $w_{31} + w_{32} + w_{33} = 0$ for $i = 3$

For k = 2, one obtains

$$\begin{array}{ccc}
3 \\
\Sigma \\
\mathbf{w}_{i,j} \\
\mathbf{x}_{j} &= \mathbf{x}_{i}^{0}
\end{array} \tag{A-5}$$

In expanded form, this can be rewritten as

$$w_{11} X_1 + w_{12} X_2 + w_{13} X_3 = 1$$
 for $i = 1$
 $w_{21} X_1 + w_{22} X_2 + w_{23} X_3 = 1$ for $i = 2$ (A-S)
 $w_{31} X_1 + w_{32} X_2 + w_{33} X_3 = 1$ for $i = 3$

For k = 3, one gets

Eq. (A-7) can be expanded as

$$w_{11} x_1^2 + w_{12} x_2^2 + w_{13} x_3^2 = 2 x_1$$
 for $i = 1$
 $w_{21} x_1^2 + w_{22} x_2^2 + w_{23} x_3^2 = 2 x_2$ for $i = 2$ (A-8)

 $w_{31} x_1^2 + w_{32} x_2^2 + w_{33} x_3^2 = 2 x_3$ for $i = 3$

In matrix form, Eqs. (A-4), (A-6), and (A-8) can be

expressed as

$$\begin{bmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ x_1^2 & x_2^2 & x_3^2 \end{bmatrix} \quad \begin{cases} w_{11} \\ w_{12} \\ w_{13} \end{cases} = \begin{cases} 0 \\ 1 \\ 2x_1 \end{cases}$$
(A-9)

$$\begin{bmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ x_1^2 & x_2^2 & x_3^2 \end{bmatrix} \quad \begin{cases} w_{21} \\ w_{22} \\ w_{23} \end{cases} = \begin{cases} 0 \\ 1 \\ 2x_2 \end{cases}$$
(A-10)

$$\begin{bmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ x_1^2 & x_2^2 & x_3^2 \end{bmatrix} \qquad \begin{cases} w_{31} \\ w_{32} \\ w_{33} \end{cases} = \begin{cases} 0 \\ 1 \\ 2x_3 \end{cases}$$
(A-

Or, in simple matrix form, this can be written as

$$\begin{bmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ x_1^2 & x_2^2 & x_3^2 \end{bmatrix} \quad \begin{cases} w_{i1} \\ w_{i2} \\ w_{i3} \end{cases} = \begin{pmatrix} 0 \\ 1 \\ 2x_i \end{pmatrix}$$

$$(A-12)$$

Let

$$\Pi_{\dot{\mathbf{1}}}(X) = (X-X_{1})(X-X_{2})\cdots(X-X_{\dot{\mathbf{1}}-1})(X-X_{\dot{\mathbf{1}}+1})\cdots(X-X_{\dot{\mathbf{N}}})$$

$$= \sum_{\dot{\mathbf{1}}=1}^{N} C_{\dot{\mathbf{1}}\dot{\mathbf{1}}} X^{\dot{\mathbf{1}}-1}$$

$$\dot{\mathbf{1}} = 1, 2, ..., N \qquad (A-13)$$

where $\Pi_{\hat{i}}(X_{\hat{j}}) = 0$ for $i \neq j$. Expanding Eq. (A-13) with N=3, one obtains

$$C_{11} + C_{12} \times + C_{13} \times^{2} = \Pi_{1}(X)$$

$$C_{21} + C_{22} \times + C_{23} \times^{2} = \Pi_{2}(X)$$

$$C_{31} + C_{32} \times + C_{33} \times^{2} = \Pi_{3}(X)$$
(A-14)

Substituting X_1 , X_2 , and X_3 into Eqs. (A-14), and dividing the first equation by $\Pi_1(X_1)$, the second equation by $\Pi_2(X_2)$, and the third equation by $\Pi_3(X_3)$ respectively, one gets in matrix form

$$\begin{bmatrix} \frac{c_{11}}{\pi_{1}(X_{1})} & \frac{c_{12}}{\pi_{1}(X_{1})} & \frac{c_{13}}{\pi_{1}(X_{1})} \\ \frac{c_{21}}{\pi_{2}(X_{2})} & \frac{c_{22}}{\pi_{2}(X_{2})} & \frac{c_{23}}{\pi_{2}(X_{2})} \\ \frac{c_{31}}{\pi_{3}(X_{3})} & \frac{c_{32}}{\pi_{3}(X_{3})} & \frac{c_{33}}{\pi_{3}(X_{3})} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ x_{1} & x_{2} & x_{3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ x_{1}^{2} & x_{2}^{2} & x_{3}^{2} \end{bmatrix}$$

$$(A-15)$$

One can write Eq. (A-15) as follows:

$$[X]^{-1}[X] = [I]$$
 (A-16)

where [X] is the Vandermonde matrix and [X] $^{-1}$ is as follows

In Eq. (A-12), it was shown that

Thus, if one can find $[X]^{-1}$, the weighting coefficients can be determined.

Note that in Eq. (A-15),

$$\Pi_{1}(X_{1}) = (X_{1} - X_{2})(X_{1} - X_{3})
\Pi_{2}(X_{2}) = (X_{2} - X_{1})(X_{2} - X_{3})
\Pi_{3}(X_{3}) = (X_{3} - X_{1})(X_{3} - X_{2})$$
(A-18)

From Eq. (A-14), one obtains

$$C_{11} + C_{12} \times + C_{13} \times^{2} = (X - X_{2})(X - X_{3})$$

$$C_{21} + C_{22} \times + C_{23} \times^{2} = (X - X_{1})(X - X_{3})$$

$$C_{31} + C_{32} \times + C_{33} \times^{2} = (X - X_{1})(X - X_{2})$$
(A-19)

Computing the coefficients of similar powers of X, the following relations are obtained for the C_{ij} :

$$C_{11} = X_2 X_3$$
 $C_{12} = -(X_2 + X_3)$ $C_{13} = 1$ $C_{21} = X_1 X_3$ $C_{22} = -(X_1 + X_3)$ $C_{23} = 1$ (A-20) $C_{31} = X_1 X_2$ $C_{32} = -(X_1 + X_2)$ $C_{33} = 1$

For the case considered here (N=3), since the grid points are equally spaced, one has

$$X_1 = 0$$
 $X_2 = 1/2$ $X_3 = 1$ (A-21)

Substituting Eq. (A-21) into Eqs. (A-18) and (A-20), respectively, one obtains

$$\pi_{1}(X_{1}) = 1/2 \qquad \pi_{2}(X_{2}) = -1/4 \qquad \pi_{3}(X_{3}) = 1/2 \qquad (A-22)$$

and

$$C_{11} = 1/2$$
 $C_{12} = -3/2$ $C_{13} = 1$ $C_{21} = 0$ $C_{22} = -1$ $C_{23} = 1$ (A-23) $C_{31} = 0$ $C_{32} = -1/2$ $C_{33} = 1$

Substituting Eqs. (A-22) and (A-23) into Eq. (A-15), one can obtain

$$[X]^{-1} = \begin{bmatrix} 1 & -3 & 2 \\ 0 & 4 & -4 \\ 0 & -1 & 2 \end{bmatrix}$$
 (A-24)

Substitution of this into Eq. (A-12') results in

Expanding this, one obtains

$$\begin{bmatrix} w_{11} & w_{21} & w_{31} \\ w_{12} & w_{22} & w_{32} \\ w_{13} & w_{23} & w_{33} \end{bmatrix} = \begin{bmatrix} 1 & -3 & 2 \\ 0 & 4 & -4 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$
(A-26)

After manipulation, one gets

$$\begin{bmatrix} w_{11} & w_{21} & w_{31} \\ w_{12} & w_{22} & w_{32} \\ w_{13} & w_{23} & w_{33} \end{bmatrix} = \begin{bmatrix} -3 & -1 & 1 \\ 4 & 0 & -4 \\ -1 & 1 & 3 \end{bmatrix}$$
 (A-27)

Finally, taking the transpose of the above matrix, one can determine the weighting coefficients required as follows:

$$\begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \end{bmatrix} = \begin{bmatrix} w_{11} & w_{21} & w_{31} \\ w_{12} & w_{22} & w_{32} \\ w_{13} & w_{23} & w_{33} \end{bmatrix} = \begin{bmatrix} -3 & 4 & -1 \\ -1 & 0 & 1 \\ 1 & -4 & 3 \end{bmatrix}$$
(A-28)

APPENDIX B

EXAMPLES OF WEIGHTING COEFFICIENTS

Typical weighting coefficients, A_{ij} , B_{ij} , C_{ij} , and D_{ij} for the first-, second-, third-, and fourth order-derivatives, respectively, are listed below for equally spaced sample points in the range $0 \le X \le 1$.

1. Three Nodal Points

X = 0, 0.5, 1.0

$$\mathbf{A_{i,j}} = \begin{bmatrix} -3 & 4 & -1 \\ -1 & 0 & 1 \\ 1 & -4 & 3 \end{bmatrix}$$

$$\mathbf{B_{i,j}} = \begin{bmatrix} 4 & -8 & 4 \\ 4 & -8 & 4 \\ 4 & -8 & 4 \end{bmatrix}$$

$$\mathbf{C_{ij}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{D_{i,j}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

2. Four Nodal Points

X = 0, 1/3, 2/3, 1

$$\mathbf{A_{i,j}} = \begin{bmatrix} 1 & -11 & 18 & -9 & 2 \\ -2 & -3 & 6 & -1 \\ 1 & -6 & 3 & 2 \\ -2 & 9 & -18 & 11 \end{bmatrix}$$

$$B_{ij} = \begin{bmatrix} 18 & -45 & 36 & -9 \\ 9 & -18 & 9 & 0 \\ 0 & 9 & -18 & 9 \\ -9 & 36 & -45 & 18 \end{bmatrix}$$

$$C_{i,j} = \begin{bmatrix} -27 & 81 & -81 & 27 \\ -27 & 81 & -81 & 27 \\ -27 & 81 & -81 & 27 \\ -27 & 81 & -81 & 27 \end{bmatrix}$$

Note that, for third-order weighting coefficients, three grid points are not sufficient and, for fourth-order weighting coefficients, four grid points are not sufficient. Thus, C_{ij} and D_{ij} are found to be zero in these respective case.

3. Five Nodal Points

X = 0, 0.25, 0.5, 0.75, 1.0

$$\mathbf{C_{ij}} = \begin{bmatrix} -160 & 576 & -768 & 448 & -96 \\ -96 & 320 & -384 & 192 & -32 \\ -32 & 64 & 0 & -64 & 32 \\ 32 & -192 & 384 & -320 & 96 \\ 96 & -448 & 768 & -576 & 160 \\ \end{bmatrix}$$

$$\mathbf{D_{i,j}} = \begin{bmatrix} 256 & -1024 & 1536 & -1024 & 256 \\ 256 & -1024 & 1536 & -1024 & 256 \\ 256 & -1024 & 1536 & -1024 & 256 \\ 256 & -1024 & 1536 & -1024 & 256 \\ 256 & -1024 & 1536 & -1024 & 256 \end{bmatrix}$$

APPENDIX C

ERROR ESTIMATION FOR A SIMPLY SUPPORTED BEAM

Consider the small deflection behavior of a simply supported beam under uniformly distributed load. Using the constitutive equation, one has

$$\frac{d^2y}{dx^2} = \frac{w}{2EI} \quad (Lx - x^2)$$
 (C-1)

Normalizing x and y as

$$X \equiv \frac{x}{L} \qquad Y \equiv \frac{y}{C} \qquad (C-2)$$

where α is the reference length, one obtains

$$\frac{\mathrm{d}^2 Y}{\mathrm{d} x^2} = X - X^2 \tag{C-3}$$

where

$$\alpha \equiv wL^4/2EI$$
 (C-4)

Applying differential quadrature yields

$$\sum_{j=1}^{N} B_{j,j} Y_{j} = X_{j} - X_{j}^{2}$$
 (C-5)

Setting N=5 and applying the boundary conditions

$$Y_1 = Y_5 = 0$$
 (C-6)

one obtains

Thus, in matrix form

$$\begin{bmatrix} B_{22} & B_{23} & B_{24} \\ B_{32} & B_{33} & B_{34} \\ B_{42} & B_{43} & B_{44} \end{bmatrix} \begin{cases} Y_2 \\ Y_3 \\ Y_4 \end{cases} = \begin{cases} X_2 - X_2^2 \\ X_3 - X_3^2 \\ X_4 - X_4^2 \end{cases}$$
(C-8)

Here, the B_{ij} 's, the X_i 's are known; thus, the Y_i 's can be determined.

In order to investigate the error, the above matrix is solved analytically and the results are compared to the exact ones in Table C-1. There is no difference between the exact and the analytical solutions for this problem with N=5. Based on the analysis in Section 2.4, one can determine the error. Using Eqs. (C-5) and (C-9), and the exact solution of this problem,

$$Y = \frac{1}{12} (2X^3 - X^4 - X)$$
 (C-9)

one gets

$$Y^{(N)}(x) = 0$$
 ; $K = 0$ with N=5 (C-10)

Thus, the DQ results are expected to be coincident with the exact results. For comparison, Tables C-2 and C-3 list the results for N=3 and N=4. In Table C-2, the maximum possible error calculated from the previous error estimation is $R''(x) \le 0.5$, and in Table C-3, it is 0.1875.

It is expected that in higher order problems, even with a large number of grid points, an error can be found due to the characteristics of applying the boundary conditions at the ends.

Table C-1. Nondimensionalized Deflections for a Simply Supported Beam Under Uniformly Distributed Load with N=5

Х	Exact Solution	Analytical Results by DQM*
0	0	0
0.25	19/1024	19/1024
0.50	5/192	5/192
0.75	19/1024	19/1024
1	0	0

Table C-2. Nondimensionalized Deflections for a Simply Supported Beam Under Uniformly Distributed Load with N=3

X	Exact Solution	Analytical Results by DQM≄
0	0	0
0.50	5/192	6/192
1	0	0

Table C-3. Nondimensionalized Deflections for a Simply Supported Beam Under Uniformly Distributed Load with N=4

Х	Exact Solution	Analytical Results by DQM*
0	0	0
1/3	0.0226337	0.0246914
2/3	0.0226337	0.0246914
1	0	0

^{*} The solution was carried out analytically to avoid any additional errors due to round off.

APPENDIX D

DETERMINATION OF OPTIMAL VALUE FOR N

Consider a differential equation

$$\frac{d^2Y}{dX^2} = g(X) \tag{D-1}$$

In differential quadrature formulation,

$$\frac{\mathrm{d}^2 Y}{\mathrm{d} x^2} = g(X) + R''(X) \tag{D-2}$$

where R''(X) represents the error of the DQ approximation. Subtracting (D-2) from (D-1) yields

$$\frac{d^2Y_e}{dX^2} - \frac{d^2Y_q}{dX^2} = -R''(X)$$
 (D-3)

Using the expression for R''(X) from section 2.4, one obtains a minimum error if

$$R''(X) = Y^{(N)}(\bar{x}) \frac{h^{N-2}}{(N-2)!} = 0$$
 (D-4)

Thus, the N which satisfies Eq. (D-4) will give the exact solution. It is thought that this could be achieved by

either finding N which makes $Y^{(N)}(x)=0$ or letting h^{N-2} be close to zero since h is always less than 1. For example, consider the same problem as in Appendix C. Using the above approach, one can find that N=5 results in $Y^{(N)}(x)$ being zero. Thus, five grid points are enough to give the exact solution.