APPENDIX A
ANALYTIC DETERMINATION OF WEIGHTING COEFFICIENTS

The set of equations to be solved for the determination

of the weighting coefficients has the form

Wij Xjk‘l = (k-1)(k-2)--- (k-n) xi(k—n—l)

M

J=1

i,k =1,2,---,N (A-1)

Here, the first-order weighting coefficients with three
equally spaced grid points will be calculated analytically
for demonstration. For the case considered, N=3, n=1, and

i,k = 1,2,3. Then, Eq. (A-1) becomes

k-1

3
L w..X = (k-1) xi‘k“z’ (A-2)

jllJ J

For k = 1, one has from Eq. (A-2)

L ow,. xj =0 (A-3)
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Eq. (A-3) can be expanded as

Yoq + Wog + Wopg = 0 for i =2
W3y + Wgp + W33 = 0 for i =3

For k = 2, one obtains

% 0
wii X=X

Mo

j=1

In expanded form, this can be

i

Wi Xy * Wp Xy + w3 Xy

Wo1 X3 + wap X3 + w3 X3

1]

W31 X3 + w3p Xy + wag X5 =

For k = 3, one gets

It M

- 2 _
T X;"=2X%

Eq. (A-7) can be expanded as
2 2
Vi1 X7t Wyp XpT Y W13 Xy

2 2
Wap X317 + Wop Xp© W3 X5

2 2 2
W3y X7 F Wap XU W33 Xy

In matrix form, Eqs. {A-4),
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rewritten as

for i
for i

for i

2 = 2 X1 for

2:-2 X2 for

= 2 X3 for

(A-6), and

2

(A-8)

(A-4)

(A-5)

(A-5)

(A-7)

(A-8)

can be




expressed as

— - ’ [
1 1 1 Y1 0
X X X3 Wip = 1 .
2 2 2
L% X E! 2Xy
- — \
(A-9)
— -
1 1 1 w21 0
o X X w22 [ = § 1
2 2 2
Xy X, X3 Vo3 2Xy
- - (A-10)
7] [
1 1 1 wa, 0
Xy X, X3 ﬁ LEY = 1
2 2 2
X Xy X3 Y33 2X3
L pu— \ 7/
(A-11)
Or, in simple matrix form, this can be written as
1 1 1 Wi, 0
X1 X2 Xﬁ Wio g 1
2 2 2
L_xl X, X3 w3 2X;
(A-12)
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Let

n, (X)

l
I ME
Q

where ni(xa.) =0 for i = j.

one obtains

Cig + Cyp X + Cyq

Ca

€3y

+ C

+ 032 X+ C

22 X + Cyg X

»
n

»
n

33

m (X)
My (X)

M4 (X)

1

(X—Xl)(X*Xz)"'(X—Xi_l)(X-X.+1)---(X"XN)

(A-13)

Expanding Eq. (A-13) with N=3,

(A-14)

Substituting X,, X,, and X, into Eas. (A-14), and

dividing the first equation by nl(xl),

by nz(xz):

one gets in matrix form

[ ¢, Ci2 Ci3
T05) B (Xy) 0y (X))

Coy Coo Coz
Ty(Xy)  Ty(Xy)  My(X,)

C3y C3o C33
Ny(Xy) Mgy(Xg) fg(Xg)
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and the third equation by ﬂ3(X3)

1

X, X4
2 2
X" X4

the second equation

respectively,




One can write Eq. (A-15) as follows:
[x1 1 x1=113 (A-16)

where [ X ] is the Vandermonde matrix and [ X ] -1 is as

follows
C1h Cip Ci3
"1(X1’ ny (X;) n; (X4)
c c C
[x7g-1-= 21 22 23 (A-17)
(X))  Ha(Xp)  0y(Xy) '
C3y C3p C33
|_MaXz) M3(X3) Az(X3)
In Eq. (A-12), it was shown that
— - -1
wil 1 1 1 0
Viz } = 1% X, X3 1 (A-127)
2 2 2
w3 5 Xy xa_J 2X;
) S
1

Thus, if one can find [ X 1 =, the weighting coefficients

can be determined.

Note that in Eq. (A-15),

T10%) = (& - X)X - X3)
M,(X5) = (X3 - X)Xy - X3) (A-18)
M3(X3) = (X3 - X)) (X3 - X,)

]

106




From Eq. (A-14), one obtains

2
Cig +Cg X+ Ci3 X

(X - %5)(X - X3)

2
Cp1 *+ Cyp X + Cpg X

(X - X, )(X - X3) (A-19)

]

2 - -
031 + C39 X + C34 X (X Xl)(X X,)
Computing the coefficients of similar powers of X, the

following relations are obtained for the Cij:

Ci: = XXy Ci2 = - (X3 + X3) Ci3 =1
021 = X1 Xq4 Cos = - (X5 + X3) Cog =1 (A-20)
€31 = XXy C32 = = (X} + Xp) C3g = 1

For the case considered here (N=3), since phe grid points

are equally spaced, one has
Xl =0 X2 = 1/2 X3 =1 (A-21)

Substituting Eq. (A-21) into Egs. (A-18) and (A-20),

respectively, one obtains

m(X;) = 1/2 N,(X,) = -1/4 Ng(Xg) =1/2 (A-22)
and
Cyy = 1/2 Cyp = —3/2 C;5 = 1
Cyy = 0 Cpp = -1 Cpg = 1 (A-23)
C3; =0 C32 = -1/2 C33 =1
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Substituting Eqs. (A-22) and (A-23) into Eq.

obtain
1 -3 2
[ X171 = 0 4 -4
0 -1 2

Substitution of this into Eq. (A-12’) results in

_ 1

i1 1 3 2 o Y
le = 0 4 -4 1
Vig 0 -1 2 2X,;

Expanding this, one obtains

W, Wy Wgg 1 -3 2 0
Wiz Wyp W3y | = | 0O 4 -4 1

After manipulation, one gets

Y11 Yn1 LAY -3 -1 1
Wiz Wap W3y | = 4 0 -4

Finally, +taking the transpose of the above matrix,

(A-15), one can

(A-24)

(A-25)

(A-26)

(A-2T7)

one can

determine the weighting coefficients required as follows:
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i3
w23
w33

vi11
wi2
¥13
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w21
Wo2
w23




APPENDIX B

EXAMPLES OF WEIGHTING COEFFICIENTS

Typical weighting coefficients, Aij’ Bij’ Cij’ and Dij
for the first-, second-, third-, and fourth order-
derivatives, respectively, are 1listed below for equally

spaced sample points in the range 0 € X £ 1.
1. Three Nodal Points

X=90, 0.5, 1.0

[—3 4 —1]
A.. = -1 0 1
ij 1 -4 3
[4 -8 4:[
B.. = 4 -8 4
ij 4 -8 4
l:o o 0]
C.. = 0 0 0
1J 0 0 0_
l:o o 0
D.. = 0 0 0
1J o 0 0.l
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2. Four Nodal Points

X=0, 1/3, 2/3, 1

1 -11 18 -9 2
A, = - -2 -3 6 -1
J 2 1 -6 3 2
-2 9 -18 11
18 -45 36  -§ |
By, = 9 -18 9 0
0 9 -18 9
-9 36 -45 18
-27 81 -81 27
C;; = -27 81 -81 27
J -27 81 -81 27
-27 81 -81 27
0 0 0 0
D, = 0 0 0 0
J 0 0 0 0
o 0 0 0

Note +that, for third-order weighting coefficients, three
grid points are not sufficient and, for fourth-order
weighting coefficients, four grid points are not sufficient.
Thus, C.. and Dij are found to be zero in these respective

13
case.
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3. Five Nodal Points

X=0, 0.25, 0.5, 0.75, 1.0

-25 48 -36 16 -3
1 -3 -10 18 -6 1
Aij = - 1 -8 0 8 -1
3 -1 6 -18 10 3
3 -16 36 -48 25
140 -416 456 -224 44
1 44 -80 24 16 -4
Bij = - -4 64 -120 64 -4
3 -4 16 24 -80 44
44 -224 456 -416 140
-160 576 -768 448 -96
-96 320 ~-384 192 -32
Cij = -32 64 ) -64 32
32 -192 384 -320 96
96 -448 768 -576 160
256 -1024 1536 -1024 256 |
2586 -1024 1536 -1024 256
Dij = 256 -1024 1536 -1024 256
’ 256 -1024 15636 -1024 256
: 256 -1024 1536 -1024 256
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APPENDIX C
ERROR ESTIMATION FOR A SIMPLY SUPPORTED BEAM
Consider the small deflection behavior of a simply

supported beam under uniformly distributed load. Using the

constitutive eguation, one has

= — (Lx - x2 ) ' (C-1)

Normalizing x and y as

Y= - (C-2)

I
R

where a« is the reference length, one obtains

a2y
= x - x2 (C-3)
ax2
where
x = wki/2E1 (C-4)

Applying differential quadrature yields
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B,.Y.=X. - X.2 (C-5)

n M

J

Y, =Y, =0 (C-6)

4
_ - 2 . s _ -
IB Y, =X -X s iz 2,3,4 (C-7)
j=2
Thus, in matrix form
B B B, Y X, - x,2
22 23 24 2 Xy — Xy
B B B Y — < X, - X2
32 33 34 3 — 3 ~ X3
B B B Y X, - X,2
| Byp 43 44| 4 4 ~ %4
(C-8)

Here, the Bij’s, the Xi's are known; thus, the Yi’s can be

determined.

In nrder to investigate the error, the above matrix is
solved analytically and the results are compared to the
exact omes in Table C-1. There is no difference between the
exact and the analytical solutions for this problem with
N=5. Based onmn the analysis in Section 2.4, one can
determine the error. Using Egqs. (C-5) and (C-9), and the

exact solution of this problem,
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1

Y=— (283 - x* x) (C-9)
12
one gets
YN (xy = o ; K =0 with N=5 (C-10)

Thus, the DQ results are expected to be coincident with the
exact results. For comparison, Tables C-2 and C-3 list the
results for N=3 and N=4. 1In Table C-2, the maximum possible
error calculated from the previous error estimation is

R"(x)% 0.5, and in Table C-3, it is 0.1875.

It is expected that in higher order problems, even with
a large number of grid points, an error can be found due to
the characteristics of applying the boundary conditions at

the ends.
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Table C-1. Nondimensionalized Deflections for a
Simply Supported Beam Under Uniformly
Distributed Load with N=5

X Exact Analytical
Solution Results by DQMx
0 (1} 0
0.25 19/1024 19/1024
0.50 5/192 5/192
0.75 19/1024 19/1024
1 0 0

Table C-2. Nondimensionalized Deflections for a
Simply Supported Beam Under Uniformly
Distributed Load with N=3

X Exact Analytical
Solution Results by DQMx

0 o 0

0.50 5/192 6/192

1 0 0

Table C-3. Nondimensionalized Deflections for a
Simply Supported Beam Under Uniformly
Distributed Load with N=4

X Exact Analytical
Solution Results by DQMx*

0 (1] 0

1/3 0.0226337 0.0246914

2/3 0.0226337 0.0246914

1 0 1]

¥ The solution was carried out analytically to avoid
additional errors due to round off.

116




APPENDIX D

. DETERMINATION OF OPTIMAL VALUE FOR N

Consider a differential equation

= &(X) (D-1)

In differential quadrature formulation,

a2y

—5° = 8(X) + R"(X) (D-2)

dx .
where R"(X) represents the error of the DQ approximation.

Subtracting (D-2) from (D-1) yieids

2 2

acy acy
_Te - _29..= - R"(X) (D-3)
dax dx

Using the expression for R"(X) from section 2.4, one obtains
a minimum error if
hN— 2

R"(X) = YN (%) —— -0 (D-4)
(N-2)!

Thus, +the N which satisfies Eq. (D-4) will give the exact

solution. It is thought that this could be achieved by
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either finding N which makes Y(N)(x)=0 or letting nN~2 be
close to zero since h is always less than 1. For example,
consider the same problem as in Appendix C. Using the above
approach, one can find that N=5 results in Y(N)(x) being

zZero. Thus, five grid points are enough to give the exact

solution.
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