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Preface 
 

 These online lecture notes (in the form of an e-book) are intended to serve as 
an introduction to the finite element method (FEM) for undergraduate students or 
other readers who have no previous experience with this computational method. 
The notes cover the basic concepts in the FEM using the simplest mechanics 
problems as examples, and  lead to the discussions and applications of the 1-D bar 
and beam, 2-D plane and 3-D solid elements in the analyses of structural stresses, 
vibrations and dynamics. The proper usage of the FEM, as a popular numerical 
tool in engineering, is emphasized throughout the notes. 

This online document is based on the lecture notes developed by the author 
since 1997 for the undergraduate course on the FEM in the mechanical engineering 
department at the University of Cincinnati. Since this is an e-book, the author 
suggests that the readers keep it that way and view it either online or offline on 
his/her computer. The contents and styles of these notes will definitely change 
from time to time, and therefore hard copies may become obsolete immediately 
after they are printed. Readers are welcome to contact the author for any 
suggestions on improving this e-book and to report any mistakes in the 
presentations of the subjects or typographical errors. The ultimate goal of this e-
book on the FEM is to make it readily available for students, researchers and 
engineers, worldwide, to help them learn subjects in the FEM and eventually solve 
their own design and analysis problems using the FEM. 

The author thanks his former undergraduate and graduate students for their 
suggestions on the earlier versions of these lecture notes and for their contributions 
to many of the examples used in the current version of the notes. 
 
Yijun Liu 
Cincinnati, Ohio, USA 
December 2002  
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Chapter 1.  Introduction 
I.  Basic Concepts 
 The finite element method (FEM), or finite element analysis 
(FEA), is based on the idea of building a complicated object with 
simple blocks, or, dividing a complicated object into small and 
manageable pieces.  Application of this simple idea can be found 
everywhere in everyday life, as well as  in engineering. 
 

Examples: 
 

• Lego (kids’ play) 

• Buildings 

• Approximation of the area of a circle: 

  

R
θi 

“Element” Si 

 

 
 
 

 

Area of one triangle: S Ri i=
1
2

2 sinθ  

Area of the circle: S S R N
N

R as NN i
i

N

= =




 → → ∞

=
∑

1

2 21
2

2
sin

π
π  

where N = total number of triangles (elements). 
Observation: Complicated or smooth objects can be 
represented by geometrically simple pieces (elements). 
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Why Finite Element Method? 
 

• Design analysis:  hand calculations, experiments, and 
computer simulations 

• FEM/FEA is the most widely applied computer simulation 
method in engineering 

• Closely integrated with CAD/CAM applications 

• ... 

 

Applications of FEM in Engineering 
 

• Mechanical/Aerospace/Civil/Automobile Engineering 

• Structure analysis (static/dynamic, linear/nonlinear) 

Modeling of gear coupling 

• Thermal/fluid flows 

• Electromagnetics 

• Geomechanics 

• Biomechanics 

• ... 

 

Examples: 
... 
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A Brief History of the FEM 
 

• 1943  -----  Courant (Variational methods) 

• 1956  -----  Turner, Clough, Martin and Topp (Stiffness) 

• 1960  -----  Clough (“Finite Element”, plane problems) 

 
• 1970s -----  Applications on mainframe computers 

• 1980s -----  Microcomputers, pre- and postprocessors 

• 1990s -----  Analysis of large structural systems 
 

Can Drop Test (Click for more information and an animation) 

© 1997-2003 Yijun Liu, University of Cincinnati   3 

http://urbana.mie.uc.edu/yliu/Showcase_FEA/Can_Drop/Can_Drop.htm


Lecture Notes: Introduction to Finite Element Method Chapter 1. Introduction 

FEM in Structural Analysis (The Procedure) 
 

• Divide structure into pieces (elements with nodes) 

• Describe the behavior of the physical quantities on each 
element 

• Connect (assemble) the elements at the nodes to form an 
approximate system of equations for the whole structure 

• Solve the system of equations involving unknown 
quantities at the nodes (e.g., displacements) 

• Calculate desired quantities (e.g., strains and stresses) at 
selected elements 

 

Example: 

  
                       FEM model for a gear tooth  (From Cook’s book, p.2).
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Computer Implementations 
 

• Preprocessing (build FE model, loads and constraints) 

• FEA solver (assemble and solve the system of equations) 

• Postprocessing (sort and display the results) 

 

Available Commercial FEM Software Packages 
 

• ANSYS  (General purpose, PC and workstations) 

• SDRC/I-DEAS  (Complete CAD/CAM/CAE package) 

• NASTRAN  (General purpose FEA on mainframes) 

• ABAQUS  (Nonlinear and dynamic analyses) 

• COSMOS  (General purpose FEA) 

• ALGOR  (PC and workstations) 

• PATRAN  (Pre/Post Processor) 

• HyperMesh  (Pre/Post Processor) 

• Dyna-3D  (Crash/impact analysis) 

• ... 

 
A Link to CAE Software and Companies 
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Objectives of This FEM Course 
 

• Understand the fundamental ideas of the FEM 

• Know the behavior and usage of each type of elements 
covered in this course 

• Be able to prepare a suitable FE model for given problems 

• Can interpret and evaluate the quality of the results (know 
the physics of the problems) 

• Be aware of the limitations of the FEM (don’t misuse the 
FEM - a numerical tool) 

 

 

 

 

 

  FEA of an Unloader Trolley (Click for more info) 
By Jeff Badertscher (ME Class of 2001, UC)  

 
See more examples in: 
Showcase: Finite Element Analysis in Actions 
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II.  Review of Matrix Algebra 
Linear System of Algebraic Equations 

a x a x a x b
a x a x a x b

a x a x a x b

n n

n n

n n nn n

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

+ +

n

+ =
+ + + =

+ + + =

...
...

.......
...

           (1) 

where x1, x2, ..., xn are the unknowns. 

 
In matrix form: 

  Ax               (2) b=

where  

                (3) 

[ ]

{ } { }

A

x b

= =



















= =



















= =



















a

a a a
a a a

a a a

x

x
x

x

b

b
b

b

ij

n

n

n n nn

i

n

i

n

11 12 1

21 22 2

1 2

1

2

1

2

...

...
... ... ... ...

...

: :

A is called a n×n (square) matrix, and x and b are (column) 
vectors of dimension n.
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Row and Column Vectors 

  v w  [ ]= =













v v v

w
w
w

1 2 3

1

2

3

Matrix Addition and Subtraction 
For two matrices A and B, both of the same size (m×n), the 

addition and subtraction are defined by 

  
ijijij

ijijij

bad
bac

−=−=

+=+=

    with
    with

BAD
BAC

 

Scalar Multiplication 
  [ ]ijaλλ =A  

Matrix Multiplication 
For two matrices A (of size l×m) and B (of size m×n), the 

product of AB is defined by 

  C  kj

m

k
ikij bac ∑

=

==
1

 withAB

where i = 1, 2, ..., l;  j = 1, 2, ..., n. 

Note that, in general, AB BA≠ , but (  
(associative). 

) ( )AB C A BC=
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Transpose of a Matrix 
If A = [aij], then the transpose of A is  

  A  [ ]T
jia=

Notice that . ( )AB B AT T= T

Symmetric Matrix 
A square (n×n) matrix A is called symmetric, if 

              or          A A= T a aij ji=  

Unit (Identity) Matrix 

  I  =



















1 0 0
0 1 0

0 0 1

...

...
... ... ... ...

...

Note that AI = A, Ix = x. 

Determinant of a Matrix 
The determinant of square matrix A is a scalar number 

denoted by det A  or  |A|.  For 2×2 and 3×3 matrices, their 
determinants are given by 

det
a b
c d

ad bc







 = −  

and 
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det

a a a
a a a
a a a

a a a a a a a a a

a a a a a a a a a

11 12 13

21 22 23

31 32 33

11 22 33 12 23 31 21 32 13

13 22 31 12 21 33 23 32 11

















= + +

− − −

Singular Matrix 
A square matrix A is singular if det A = 0, which indicates 

problems in the systems (nonunique solutions, degeneracy, etc.) 

Matrix Inversion 
For a square and nonsingular matrix A ( ), its 

inverse A
det A ≠ 0

-1 is constructed in such a way that 

  AA A A I− −= =1 1  

 The cofactor matrix C of matrix A is defined by 

  C Mij
i j

ij= − +( )1  

where Mij is the determinant of the smaller matrix obtained by 
eliminating the ith row and jth column of A. 

 Thus, the inverse of A can be determined by 

  A
A

C− =1 1
det

T  

 We can show that ( )AB B A− − −=1 1 1. 
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Examples: 

 (1) 
a b
c d ad bc

d b
c a




 =

−

−
−












−1
1

( )
 

Checking, 

  
a b
c d

a b
c d ad bc

d b
c a

a b
c d



















 =

−

−
−


















 =











−1
1 1 0

0 1( )
 

 

 (2) 
1 1 0
1 2 1

0 1 2

1
4 2 1

3 2 1
2 2 1
1 1 1

3 2 1
2 2 1
1 1 1

1−
− −

−













=
− −

















=



















−

( )

T

 

Checking, 

  
  

1 1 0
1 2 1

0 1 2

3 2 1
2 2 1
1 1 1

1 0 0
0 1 0
0 0 1

−
− −

−





























=
















 

 If det A = 0 (i.e., A is singular), then A-1 does not exist! 

 The solution of the linear system of equations (Eq.(1)) can be 
expressed as (assuming the coefficient matrix A is nonsingular) 

  x A  b= −1

Thus, the main task in solving a linear system of equations is to 
found the inverse of the coefficient matrix. 
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Solution Techniques for Linear Systems of Equations 
• Gauss elimination methods 

• Iterative methods 

Positive Definite Matrix 
A square (n×n) matrix A is said to be positive definite, if for 

all nonzero vector x of dimension n, 

  x A  xT > 0

Note that positive definite matrices are nonsingular. 

Differentiation and Integration of a Matrix 
 Let  

  A  [ ]( ) ( )t a tij=

then the differentiation is defined by 

  d
dt

t
da t

dt
ijA( )
( )

=








    

and the integration by 

  ∫  A( ) ( )t dt a t dtij= 



∫
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Types of Finite Elements 
 

1-D (Line) Element 

 
 

 

(Spring, truss, beam, pipe, etc.) 
 

2-D (Plane) Element  

 

 

 

 

 

(Membrane, plate, shell, etc.) 
 

3-D (Solid) Element  

 

 
 
 
 
 
 

 (3-D fields - temperature, displacement, stress, flow velocity) 
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III.  Spring Element 
 

 “Everything important is simple.” 
 

One Spring Element 

 Two nodes:    i, j 

k

i j

ujuifi fj

x

 

 Nodal displacements:  ui,  uj (in, m, mm) 

 Nodal forces:    fi,  fj (lb, Newton) 

 Spring constant (stiffness): k  (lb/in, N/m, N/mm) 

Spring force-displacement relationship: 

  F k= ∆   with ∆ = −u uj i  

 

∆

F Nonlinear

Linear

k

 

 

 

 

 

 k F= / ∆   (> 0) is the force needed to produce a unit stretch. 
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We only consider linear problems in this introductory 
course. 

 

Consider the equilibrium of forces for the spring.  At node i, 
we have 

  f F k u u ku kui j i= − = − i j− = −( )  

and at node j, 

  f F k u u ku kuj j i i= = j− = − +( )  

In matrix form, 

  
  

k k
k k

u
u

f
f

i

j

i

j

−
−













=








or, 

  ku f=  

where 

  k = (element) stiffness matrix 

  u = (element nodal) displacement vector 

  f  = (element nodal) force vector 

Note that k is symmetric.  Is k singular or nonsingular?  That is, 
can we solve the equation?  If not, why? 
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Spring System 
 

k1

 
u1, F1

x
k2

u2, F2 u3, F3

1 2 3

 

 

 

For element 1, 

  
  

k k
k k

u
u

f
f

1 1

1 1

1

2

1
1

2
1

−
−













=








element 2, 

  
  

k k
k k

u
u

f
f

2 2

2 2

2

3

1
2

2
2

−
−













=








where is the (internal) force acting on local node i of element 
m (i = 1, 2). 

f i
m

Assemble the stiffness matrix for the whole system: 

Consider the equilibrium of forces at node 1, 

   F f1 1
1=

at node 2, 

   F f f2 2
1

1
2= +

and node 3, 

   F f3 2
2=
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That is, 

   
F k u k u
F k u k k u k
F k u k u

1 1 1 1 2

2 1 1 1 2 2 2

3 2 2 2 3

= −
= − + + −
= − +

( ) u3

In matrix form, 

  
  














=










 3

2

1

3

2

1

0

0

F
F
F

u
u
u








−
−+

22

221

kk
kk


−

−

1

11

kk
kk

or  

  KU  F=

K is the stiffness matrix (structure matrix) for the spring system. 

 

An alternative way of assembling the whole stiffness matrix: 

“Enlarging” the stiffness matrices for elements 1 and 2, we 
have 

   
k k
k k

u
u
u

f
f

1 1

1 1

1

2

3

1
1

2
1

0
0

0 0 0 0

−
−






























=

















   
0 0 0
0
0

0

2 2

2 2

1

2

3

1
2

2
2

k k
k k

u
u
u

f
f

−
−






























=














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Adding the two matrix equations (superposition), we have 

   
k k
k k k k

k k

u
u
u

f
f f

f

1 1

1 1 2 2

2 2

1

2

3

1
1

2
1

1
2

2
2

0

0

−
− + −

−






























= +

















This is the same equation we derived by using the force 
equilibrium concept. 

 

Boundary and load conditions: 

Assuming,  u F F P1 20= 3= =and      

we have 

   
k k
k k k k

k k
u
u

F
P
P

1 1

1 1 2 2

2 2

2

3

10

0

0−
− + −

−






























=















which reduces to 

   
k k k

k k
u
u

P
P

1 2 2

2 2

2

3

+ −
−


















=








and  

  F k u1 1= − 2  

Unknowns are 

U =








u
u

2

3

  and the reaction force  (if desired). F1
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Solving the equations, we obtain the displacements 

   
u
u

P k
P k P k

2

3

1

1 2

2
2









=
+









/
/ /

and the reaction force 

  F P1 2= −  

 

Checking the Results 
• Deformed shape of the structure 

• Balance of the external forces 

• Order of magnitudes of the numbers 

 

Notes About the Spring Elements 
• Suitable for stiffness analysis 

• Not suitable for stress analysis of the spring itself 

• Can have spring elements with stiffness in the lateral 
direction, spring elements for torsion, etc. 
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Example 1.1 
 

k1

x
1 2 3

k3

4

P

 

k2
 

 

 

Given: For the spring system shown above, 

  
k k k
P u

1 2 3

4 0
= = =
= = =

100 N / mm,  200 N / mm,  100 N / mm
500 N,   u1

 

Find: (a) the global stiffness matrix 

(b) displacements of nodes 2 and 3 

(c) the reaction forces at nodes 1 and 4 

(d) the force in the spring 2 

Solution:  

(a)  The element stiffness matrices are 

  k     (N/mm)    (1) 1

100 100
100 100

=
−

−










  k 2

200 200
200 200

=
−

−








    (N/mm)    (2) 

  k 3

100 100
100 100

=
−

−








     (N/mm)    (3) 
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Applying the superposition concept, we obtain the global stiffness 
matrix for the spring system as 

   

u u u1 2 3

0 0
0

0
0 0

K =
−

−














u4

−

100 100
100 100

−
− + 200 200

200 200− +100 100
100 100 




or 

   K =

−
− −

− −
−



















100 100 0 0
100 300 200 0
0 200 300 100
0 0 100 100

which is symmetric and banded. 

Equilibrium (FE) equation for the whole system is  

     (4) 

100 100 0 0
100 300 200 0
0 200 300 100
0 0 100 100

0
1

2

3

4

1

4

−
− −

− −
−





































=



















u
u
u
u

F

P
F

 

(b)  Applying the BC (u u1 4 0= = ) in Eq(4), or deleting the 1st and 
4th rows and columns, we have 
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  
      (5) 

300 200
200 300

02

3

−
−













=








u
u P

Solving Eq.(5), we obtain 

      (6) 
u
u

P
P

2

3

250
3 500

2
3









=








=








/
/

(mm)

 

(c) From the 1st and 4th equations in (4), we get the reaction forces 

  F u1 2100 200= − = − (N) 

  F u4 3100 300= − = − ( )N  

 

(d) The FE equation for spring (element) 2 is 

    
200 200
200 200

−
−

















=








u
u

f
f

i

j

i

j

Here i = 2, j = 3 for element 2.  Thus we can calculate the spring 
force as 

   

[ ]

[ ]

F f f
u
uj i= = − = −









= −








=

200 200

200 200
2
3

200

2

3

(N)

Check the results!
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Example 1.2 

 

k1

x

k24
2

3

k3

5

F 2

F 14

1

2 3
 

k

1

4
 

 

 

 

 

Problem: For the spring system with arbitrarily numbered nodes 
and elements, as shown above, find the global stiffness 
matrix. 

Solution:  

First we construct the following  

  Element Connectivity Table 

Element Node i (1) Node j (2) 
1 4 2 
2 2 3 
3 3 5 
4 2 1 

 

which specifies the global node numbers corresponding to the 
local node numbers for each element. 
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Then we can write the element stiffness matrices as follows 

      
u u
k k
k k

4 2

1
1 1

1 1

k =
−

−










u u
k k
k k

2 3

2
2 2

2 2

k =
−

−










 

      
u u
k
k k

3 5

3
3 3

3 3

k =
−

−










k

k

5

3

0
−

u u
k k
k k

2 1

4
4 4

4 4

k =
−

−










Finally, applying the superposition method, we obtain the global 
stiffness matrix as follows 

   

u u u u u
k k
k k k k k k

k k k
k k

k k

1 2 3 4

4 4

4 1 2 4 2

2 2 3

1 1

3 3

0 0 0
0

0 0
0 0
0 0 0

K =

−
− + − −

− +
−

−























+ 1

The matrix is symmetric, banded, but singular. 
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Chapter 2.   Bar and Beam Elements 
 

I. Linear Static Analysis 
 

 Most structural analysis problems can be treated as linear 
static problems, based on the following assumptions 

1. Small deformations (loading pattern is not changed due 
to the deformed shape) 

2. Elastic materials (no plasticity or failures) 

3. Static loads (the load is applied to the structure in a slow 
or steady fashion) 

 

 Linear analysis can provide most of the information about 
the behavior of a structure, and can be a good approximation for 
many analyses.  It is also the bases of  nonlinear analysis in most 
of the cases. 
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II. Bar Element 
 

 Consider a uniform prismatic bar: 

 

L
x

fi i j fj

ui uj

A,E

 

 

 

 

 L    length  

 A    cross-sectional area 

 E    elastic modulus 

u u x= ( )   displacement 

ε ε= ( )x    strain 

σ σ= ( )x   stress 

 

Strain-displacement relation: 

  ε =
du
dx

         (1) 

Stress-strain relation: 

  σ ε= E          (2) 
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Stiffness Matrix --- Direct Method 
 Assuming that the displacement u is varying linearly along 
the axis of the bar, i.e., 

  u x       (3) x
L

u x
L

ui( ) = −





+1 j

we have 

  ε =
−

=
u u

L L
j i ∆   (∆  = elongation)  (4) 

  σ ε= =E E
L
∆         (5) 

We also have 

  σ =
F
A

    (F = force in bar)  (6) 

Thus, (5) and (6) lead to 

  F EA
L

k= =∆ ∆        (7) 

where k EA
L

=  is the stiffness of the bar. 

 The bar is acting like a spring in this case and we conclude 
that element stiffness matrix is 
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  k  =
−

−








 =

−

−

















k k
k k

EA
L

EA
L

EA
L

EA
L

or 

  k =
−

−










EA
L

1 1
1 1

       (8) 

This can be verified by considering the equilibrium of the forces 
at the two nodes. 

 Element equilibrium equation is 

  EA
L

u
u

f
f

i

j

i

j

1 1
1 1

−
−


















=








     (9) 

 

Degree of Freedom (dof) 

Number of components of the displacement vector at a 
node. 

For 1-D bar element:  one dof at each node. 

 

Physical Meaning of the Coefficients in k 

 The jth column of k (here j = 1 or 2) represents the forces 
applied to the bar to maintain a deformed shape with unit 
displacement at node j and zero displacement at the other node. 
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Stiffness Matrix --- A Formal Approach 
 We derive the same stiffness matrix for the bar using a 
formal approach which can be applied to many other more 
complicated situations. 

 Define two linear shape functions as follows  

  N Ni ( ) , ( )jξ ξ ξ ξ= − =1     (10) 

where  

  ξ =
x
L

, 0 ξ≤ ≤ 1      (11) 

From (3) we can write the displacement as 

  u x u N u N ui i j( ) ( ) ( ) ( )= = j+ξ ξ ξ  

or 

  u N       (12) [ ]N
u
ui j

i

j

=








= Nu

Strain is given by (1) and (12) as 

  ε = = 





=
du
dx

d
dx

N u Bu       (13) 

where B is the element strain-displacement matrix, which is 

  [ ] [ ]B = =
d
dx

N N d
d

N N d
dxi j i j( ) ( ) ( ) ( )ξ ξ

ξ
ξ ξ •

ξ  

i.e.,         (14) [B = −1 1/ /L ]L
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Stress can be written as 

  σ ε= =E EBu         (15) 

 Consider the strain energy stored in the bar 

  

( )

( )

U dV E

E dV

V V

V

= =

=












∫ ∫

∫

1
2

1
2

1
2

σ εT T T

T T

u B Bu

u B B u

dV

   (16) 

where (13) and (15) have been used. 

 The work done by the two nodal forces is 

  W f      (17) u f ui i j j= + =
1
2

1
2

1
2

u fT

 For conservative system, we state that 

  U          (18) W=

which gives 

  ( )1
2

1
2

u B B u uT T E dV
V
∫













= fT

f

 

 We can conclude that 

   ( )B B uT E dV
V
∫













=
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or  

  ku f=          (19) 

where 

         (20) ( )k B BT= ∫ E dV
V

is the element stiffness matrix. 

 Expression (20) is a general result which can be used for 
the construction of other types of elements.  This expression can 
also be derived using other more rigorous approaches, such as 
the Principle of Minimum Potential Energy, or the Galerkin’s 
Method. 

 Now, we evaluate (20) for the bar element by using (14)  

  [ ]k =
−








− =
−

−








∫

1
1

1 1
1 1
1 1

0

/
/

/ /
L

L
E L L Adx EA

L

L

 

which is the same as we derived using the direct method. 

 Note that from (16) and (20), the strain energy in the 
element can be written as 

  U         (21) =
1
2

u kuT
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Example 2.1 
 

L

x1 P

2A,E

L

2 3

A,E1 2

 

 

 

 

Problem: Find the stresses in the two bar assembly which is 
loaded with force P, and constrained at the two ends, 
as shown in the figure. 

Solution: Use two 1-D bar elements. 

Element 1, 

  
u u

EA
L

1 2

1
2 1 1

1 1
k =

−
−










 

Element 2, 

  
u u

EA
L

2 3

2

1 1
1 1

k =
−

−









 

Imagine a frictionless pin at node 2, which connects the two 
elements.  We can assemble the global FE equation as follows, 
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  EA
L

u
u
u

F
F
F

2 2 0
2 3 1

0 1 1

1

2

3

1

2

3

−
− −

−






























=














 

Load and boundary conditions (BC) are, 

  u u F P1 3 20= = =,  

FE equation becomes, 

  EA
L

u
F
P
F

2 2 0
2 3 1

0 1 1

0

0
2

1

3

−
− −

−






























=














 

Deleting the 1st row and column, and the 3rd row and column, we 
obtain, 

  [ ]{ } { }EA
L

u P3 2 =  

Thus, 

  u PL
EA2 3

=  

and 

  
u
u
u

PL
EA

1

2

3

3

0
1
0











=















  

Stress in element 1 is 
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[ ]σ ε1 1 1 1

1

2

2 1

1 1

3
0

3

= = = −








=
−

= −





=

E E E L L
u
u

E u u
L

E
L

PL
EA

P
A

B u / /
 

Similarly, stress in element 2 is 

  
[ ]σ ε2 2 2 2

2

3

3 2

1 1

0
3 3

= = = −








=
−

= −



 = −

E E E L L
u
u

E
u u

L
E
L

PL
EA

P
A

B u / /
 

which indicates that bar 2 is in compression. 

Check the results! 

 

Notes: 

• In this case, the calculated stresses in elements 1 and 2 
are exact within the linear theory for 1-D bar structures.  
It will not help if we further divide element 1 or 2 into 
smaller finite elements. 

• For tapered bars, averaged values of the cross-sectional 
areas should be used for the elements. 

• We need to find the displacements first in order to find 
the stresses, since we are using the displacement based 
FEM. 
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Example 2.2 
 

L

x1 P

A,E

L

2 3

1 2

∆

 

 

 

 

 

Problem: Determine the support reaction forces at the two ends 
of the bar shown above, given the following, 

   
P E
A L =

= × = ×

= =

6 0 10 2 0 10
250 150

4 4

2

. , .
,
N N /

mm mm, 1.2 mm

2

∆

,mm

Solution:  

We first check to see if or not the contact of the bar with 
the wall on the right will occur.  To do this, we imagine the wall 
on the right is removed and calculate the displacement at the 
right end, 

  ∆ ∆0

4

4

6 0 10 150
2 0 10 250

18 12= =
×
×

= > =
PL
EA

( . )( )
( . )( )

. .mm mm 

Thus, contact occurs. 

The global FE equation is found to be, 
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  EA
L

u
u
u

F
F
F

1 1 0
1 2 1

0 1 1

1

2

3

1

2

3

−
− −

−






























=














 

The load and boundary conditions are, 

   
F P
u u

2
4

1 3

6 0 10
0 1

= = ×
= = =

.
, .

N
mm∆ 2

FE equation becomes, 

  EA
L

u
F
P
F

1 1 0
1 2 1

0 1 1

0

2

1

3

−
− −

−






























=













∆
 

The 2nd equation gives, 

  [ ] { }EA
L

u
P2 1 2−









=
∆

 

that is, 

  [ ]{ }EA
L

u P EA
L

2 2 = +







∆  

Solving this, we obtain 

  u  PL
EA2

1
2

15= +





=∆ . mm

and 
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  
  

u
u
u

1

2

3

0
15
12











=














.
.

( )mm

 To calculate the support reaction forces, we apply the 1st 
and 3rd equations in the global FE equation. 

The 1st equation gives, 

  [ ] ( )EA
L

u
u
u

EA
L

u1

1

2

3

2
41 1 0 5 0 10= −














= − = − ×. NF  

and the 3rd equation gives, 

  
[ ] ( )F

EA
L

u
u
u

EA
L

u u3

1

2

3

2 3

4

0 1 1

10 10

= −













= − +

= − ×. N

 

Check the results.! 

© 1997-2002 Yijun Liu, University of Cincinnati  37 



Lecture Notes:  Introduction to Finite Element Method Chapter 2.   Bar and Beam Elements 

Distributed Load 
 

xi j

q

qL/2

i j

qL/2

 

 

 

 

 

 

 Uniformly distributed axial load q  (N/mm, N/m, lb/in) can 
be converted to two equivalent nodal forces of magnitude qL/2.  
We verify this by considering the work done by the load q, 

  

[ ]

[ ]

[ ]

W uqdx u q Ld
qL

u d

qL
N N

u
u d

qL
d

u
u

qL qL u
u

u u
qL
qL

q

L

i j
i

j

i

j

i

j

i j

= = =

=








= −








= 












=








∫ ∫ ∫

∫

∫

1
2

1
2 2

2

2
1

1
2 2 2

1
2

2
2

0 0

1

0

1

0

1

0

1

( ) ( ) ( )

( ) ( )

/
/

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

ξ
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that is, 

  W   (22) 
qL
qLq

T
q q= =









1
2

2
2

u f fwith  
/
/

Thus, from the U=W concept for the element, we have 

  1
2

1
2

1
2

u ku u f u fT T
q= + T       (23) 

which yields 

  ku f f= + q         (24) 

The new nodal force vector is 

  f f       (25) + =
+
+









q
i

j

f qL
f qL

/
/
2
2

In an assembly of bars, 

 

1 3

q

qL/2

1 3

qL/2

2

2

qL
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Bar Elements in 2-D and 3-D Space 

2-D Case 
 x

i

j

ui
’

y

X

Y
θ

ui

vi

 

 

 

 

 
 

Local Global 

x, y X, Y 

u vi i
' ',  u vi i,  

1 dof at a node 2 dof’s at a node 

 
Note:  Lateral displacement vi

’ does not contribute to the stretch 
of the bar, within the linear theory. 

Transformation 

   
[ ]

[ ]

u u v l m
u
v

v u v m l
u
v

i i i
i

i

i i i
i

i

'

'

cos sin

sin cos

= + =








= − + = −








θ θ

θ θ

where l m= =cos , sinθ θ . 
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In matrix form, 

        (26) 
u
v

l m
m l

u
v

i

i

i

i

'

'









=
−


















or, 

u Ti i
' u~=  

where the transformation matrix  

          (27) ~T =
−











l m
m l

is orthogonal, that is, ~ ~T T− =1 T . 

 For the two nodes of the bar element, we have 

      (28) 

u
v
u
v

l m
m l

l m
m l

u
v
u
v

i

i

j

j

i

i

j

j

'

'

'

'





















=
−

−







































0 0
0 0

0 0
0 0

or, 

u T' = u   with T
T 0
0 T

=










~
~     (29) 

The nodal forces are transformed in the same way, 

f Tf' =          (30) 
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Stiffness Matrix in the 2-D Space 
 In the local coordinate system, we have 

  EA
L

u
u

f
f

i

j

i

j

1 1
1 1

−
−


















=








'

'

'

'  

Augmenting this equation, we write  

  EA
L

u
v
u
v

f

f

i

i

j

j

i

j

1 0 1 0
0 0 0 0
1 0 1 0

0 0 0 0

0

0

−

−







































=





















'

'

'

'

'

'  

or, 

  k u f' ' = '  

Using transformations given in (29) and (30), we obtain 

  k Tu Tf' =  

Multiplying both sides by TT and noticing that TTT = I, we 
obtain 

  T k Tu fT ' =          (31) 

Thus, the element stiffness matrix k in the global coordinate 
system is 

           (32) k T k= T 'T

which is a 4×4 symmetric matrix. 
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Explicit form, 

  

u v u v

EA
L

l lm l l
lm m lm m
l lm l lm
lm m lm m

i i j

k =

− −
− −

− −
− −



















2 2

2

2 2

2 2

m
j

2    (33) 

Calculation of the directional cosines  l and m: 

  l
X X

L
m

Y Y
L

j i j= = i−
= =

−
cos , sinθ θ   (34) 

The structure stiffness matrix is assembled by using the element 
stiffness matrices in the usual way as in the 1-D case. 

Element Stress 

σ ε= =








= −


































E E
u
u

E
L L

l m
l m

u
v
u
v

i

j

i

i

j

j

B
'

'

1 1 0 0
0 0

 

That is, 

[σ = − −





















E
L

l m l m

u
v
u
v

i

i

j

j

]      (35) 
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Example 2.3 
 A simple plane truss is made 
of two identical bars (with E, A, and 
L), and loaded as shown in the 
figure.  Find 

1) displacement of node 2; 

2) stress in each bar. 

Solution: 

 This simple structure is used 
here to demonstrate the assembly 
and solution process using the bar element in 2-D space. 

X

Y P1

P2

45o

45o

3

2

1

1

2

 

In local coordinate systems, we have 

  k k1 2

1 1
1 1

' '=
−

−








 =

EA
L

 

These two matrices cannot be assembled together, because they 
are in different coordinate systems.  We need to convert them to 
global coordinate system OXY. 

Element 1: 

  θ = = =45 2
2

o l m,  

Using formula (32) or (33), we obtain the stiffness matrix in the 
global system 
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u v u v

EA
L

T

1 1 2 2

1 1 1 1 2

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

k T k T= =

− −
− −

− −
− −



















'  

Element 2: 

  θ = = − =135 2
2

2
2

o l m, ,  

We have, 

  

u v u v

EA
L

T

2 2 3 3

2 2 2 2 2

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1

k T k T= =

− −
− −
− −

− −



















'  

Assemble the structure FE equation, 

  

u v u v u v

EA
L

u
v
u
v
u
v

F
F
F
F
F
F

X

Y

X

Y

X

Y

1 1 2 2 3 3

1

1

2

2

3

3

1

1

2

2

3

3

2

1 1 1 1 0 0
1 1 1 1 0 0
1 1 2 0 1 1
1 1 0 2 1 1

0 0 1 1 1 1
0 0 1 1 1 1

− −
− −

− − −
− − −

− −
− −





















































=




























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Load and boundary conditions (BC): 

  u v u v F P F PX Y1 1 3 3 2 1 20= = = 2= = =, ,  

Condensed FE equation, 

  EA
L

u
v

P
P2

2 0
0 2

2

2

1

2


















=








 

Solving this, we obtain the displacement of node 2, 

  
u
v

L
EA

P
P

2

2

1

2









=








 

Using formula (35), we calculate the stresses in the two bars, 

  [ ] ( )σ1
1

2

1 2
2

2
1 1 1 1

0
0 2

2
= − −



















= +
E
L

L
EA P

P
A

P P  

  [ ] ( )σ 2

1

2
1 2

2
2

1 1 1 1
0
0

2
2

= − −



















= −
E
L

L
EA

P
P

A
P P  

 

Check the results: 

Look for the equilibrium conditions, symmetry, 
antisymmetry, etc. 
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Example 2.4    (Multipoint Constraint) 
   

X

Y

P

45o

3
2

1

3

2

1

x’
y’

L

 

 

 

 

 

 

 

 

 For the plane truss shown above,  

  
P L m E GPa
A m

A m

= = =

= ×

= ×

−

−

1000 1 210
6 0 10

6 2 10

4 2

4 2

 kN,     
for elements 1 and 2,

for element 3.

, ,
.  

 Determine the displacements and reaction forces. 

Solution: 

We have an inclined roller at node 3, which needs special 
attention in the FE solution.  We first assemble the global FE 
equation for the truss. 

Element 1: 

  θ = = =90 0 1o l m, ,  
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u v u v1 1 2 2

1

9 4210 10 6 0 10
1

0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

k =
× × −

−



















−( )( . ) ( )N / m
 

Element 2: 

  θ = = =0 1o l m, , 0  

  

u v u v2 2 3 3

2

9 4210 10 6 0 10
1

1 0 1 0
0 0 0 0
1 0 1 0

0 0 0 0

k =
× ×

−

−



















−( )( . ) ( )N / m
 

Element 3: 

  θ = = =45 1
2

1
2

o l m, ,  

 

u v u v1 1 3

3

9 4210 10 6 2 10
2

0 5 0 5 0 5 0 5
0 5 0 5 0 5 0 5
0 5 0 5 0 5 0 5
0 5 0 5 0 5 0 5

k =
× ×

− −
− −

− −
− −



















−( )( )
. . . .
. . . .
. . . .
. . . .

( )N / m

3
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The global FE equation is, 

 1260 10

0 5 0 5 0 0 0 5 0 5
15 0 1 0 5 0 5

1 0 1 0
1 0 0

15 0 5
0 5

5

1

1

2

2

3

3

1

1

2

2

3

3

×

− −
− − −

−





















































=





























. . . .
. . .

. .
.Sym.

u
v
u
v
u
v

F
F
F
F
F
F

X

Y

X

Y

X

Y

 

Load and boundary conditions (BC): 

   
u v v v
F P FX x

1 1 2 3

2 3

0 0
0

= = = =
= =

, ,
, .

'

'

and 

From the transformation relation and the BC, we have 

  v
u
v

u v3
3

3
3 3

2
2

2
2

2
2

0' ( )= −

















= − + = , 

that is, 

   u v3 3 0− =

This is a multipoint constraint (MPC). 

 Similarly, we have a relation for the force at node 3, 

  F
F
F

F Fx
X

Y
X Y3

3

3
3 3

2
2

2
2

2
2

0' ( )=

















= + ,=  

that is, 
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  F FX Y3 3 0+ =  

 Applying the load and BC’s in the structure FE equation by 
‘deleting’ 1st, 2nd and 4th rows and columns, we have 

  1260 10
1 1 0
1 15 0 5

0 0 5 0 5

5
2

3

3

3

3

×
−

−





























=














. .
. .

u
u
v

P
F
F

X

Y

 

Further, from the MPC and the force relation at node 3, the 
equation becomes, 

  1260 10
1 1 0
1 15 0 5

0 0 5 0 5

5
2

3

3

3

3

×
−

−





























=

−














. .
. .

u
u
u

P
F
F

X

X

 

which is 

  1260 10
1 1
1 2

0 1

5 2

3
3

3

×
−

−
























=
−















u
u

P
F
F

X

X

 

The 3rd equation yields, 

   F uX3
5

31260 10= − ×

Substituting this into the 2nd equation and rearranging, we have 

  1260 10
1 1
1 3 0

5 2

3

×
−

−

















=








u
u

P
 

Solving this, we obtain the displacements, 
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u
u

P
P

2

3
5

1
2520 10

3 0 01191
0 003968









=
×









=








.
.

( )m  

From the global FE equation, we can calculate the reaction 
forces, 

 

F
F
F
F
F

u
u
v

X

Y

Y

X

Y

1

1

2

3

3

5
2

3

3

1260 10

0 0 5 0 5
0 0 5 0 5
0 0 0
1 15 0 5

0 0 5 0 5

500
500
0 0
500

500



























= ×

− −
− −

−




































=

−
−

−



























. .

. .

. .
. .

. (kN)  

 

Check the results! 

 

A general multipoint constraint (MPC) can be described as, 

   A uj j
j

=∑ 0

where Aj’s are constants and uj’s are nodal displacement 
components.  In the FE software, such as MSC/NASTRAN, users 
only need to specify this relation to the software. The software 
will take care of the solution. 

 

Penalty Approach for Handling BC’s and MPC’s 

© 1997-2002 Yijun Liu, University of Cincinnati  51 



Lecture Notes:  Introduction to Finite Element Method Chapter 2.   Bar and Beam Elements 

3-D Case 

x

i

j
y

X

Y

Z

z

 

Local Global 

x, y, z X, Y, Z 

u v wi i
' ', , i

'
i u v wi i, ,  

1 dof at node 3 dof’s at node 

 

 Element stiffness matrices are calculated in the local 
coordinate systems and then transformed into the global 
coordinate system (X, Y, Z) where they are assembled. 

 

FEA software packages will do this transformation 
automatically. 

Input data for bar elements: 

• (X, Y, Z) for each node 

• E and A for each element 
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III. Beam Element 
Simple Plane Beam Element 
 

L

x
i j

vj, Fj

E,I
θi, Mi θj, Mj

vi, Fi

y

 

 

 

 

 

 L   
 length  
 I    moment of inertia of the cross-sectional area 
 E    elastic modulus 

v v x= ( )   deflection (lateral displacement) of the   
   neutral axis 

θ =
dv
dx

   rotation about the z-axis 

F F x= ( )   shear force 
M M x= ( )  moment about z-axis 

 

Elementary Beam Theory: 

EI d v
dx

M x
2

2 = ( )        (36) 

σ = −
My
I

        (37) 
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Direct Method 
 Using the results from elementary beam theory to compute 
each column of the stiffness matrix. 

 
(Fig. 2.3-1. on Page 21 of Cook’s Book) 

 

Element stiffness equation (local node:  i, j or 1, 2): 

v v

EI
L

L L
L L L L

L L
L L L L

v

v

F
M
F
M

i i j j

i

i

j

j

i

i

j

j

θ θ

θ

θ

3

2 2

2 2

12 6 12 6
6 4 6 2
12 6 12 6

6 2 6 4

−
−

− − −
−







































=





















  (38) 
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Formal Approach 
Apply the formula, 

         (39) k B B= ∫ T

L

EI dx
0

 

To derive this, we introduce the shape functions, 

       (40) 

N x x L x L
N x x x L x L
N x x L x L
N x x L x L

1
2 2 3

2
2 3

3
2 2 3 3

4
2 3 2

1 3 2
2

3 2

( ) / /
( ) / /
( ) / /
( ) / /

= − +

= − +

= −

= − +

3

2

Then, we can represent the deflection as, 

   (41) [ ]

v x

N x N x N x N x

v

v

i

i

j

j

( )

( ) ( ) ( ) ( )

=

=





















Nu

1 2 3 4

θ

θ

which is a cubic function.  Notice that, 

  
N N
N N L N

1 3

2 3 4

1+ =
+ + = x

 

which implies that the rigid body motion is represented by the 
assumed deformed shape of the beam. 
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Curvature of the beam is, 

  d v
dx

d
dx

2

2

2

2= =Nu Bu       (42) 

where the strain-displacement matrix B is given by, 

 
[ ]B N= =

= − + − + − − +





d
dx

N x N x N x N x

L
x

L L
x

L L
x

L L
x

L

2

2 1 2 3 4

2 3 2 2 3 2

6 12 4 6 6 12 2 6

" " " "( ) ( ) ( ) ( )
 (43) 

Strain energy stored in the beam element is 

 

( ) ( )

U dV
My
I E

My
I

dAdx

M
EI

Mdx
d v
dx

EI
d v
dx

dx

EI dx

EI dx

T

V A

L T

T

L TL

T
L

T T

L

= = −



 −





= =












=

=












∫ ∫∫

∫ ∫

∫

∫

1
2

1
2

1

1
2

1 1
2

1
2

1
2

0

0

2

2

2

2

0

0

0

σ ε

Bu Bu

u B B u

 

We conclude that the stiffness matrix for the simple beam 
element is 

  k B  B= ∫ T

L

EI dx
0
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Applying the result in (43) and carrying out the integration, we 
arrive at the same stiffness matrix as given in (38). 

 Combining the axial stiffness (bar element), we obtain the 
stiffness matrix of a general 2-D beam element, 

u v u v

EA
L

EA
L

EI
L

EI
L

EI
L

EI
L

EI
L

EI
L

EI
L

EI
L

EA
L

EA
L

EI
L

EI
L

EI
L

EI
L

EI
L

EI
L

EI
L

EI
L

i i i j j jθ θ

k =

−

−

−

−

− − −

−





































0 0 0 0

0 12 6 0 12 6

0 6 4 0 6 2

0 0 0 0

0 12 6 0 12 6

0 6 2 0 6 4

3 2 3 2

2 2

3 2 3

2 2

2

 

3-D Beam Element 
 The element stiffness matrix is formed in the local (2-D) 
coordinate system first and then transformed into the global (3-
D) coordinate system to be assembled. 

 
(Fig. 2.3-2. On Page 24 of Cook’s book) 
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Example 2.5 
 

L

X1 2

P

E,I

Y

L
3

M
1 2

 

 

 

 

 

Given: The beam shown above is clamped at the two ends and 
acted upon by the force P and moment M in the mid-
span. 

Find:    The deflection and rotation at the center node and the 
reaction forces and moments at the two ends. 

Solution: Element stiffness matrices are, 

  

v v

EI
L

L L
L L L L

L L
L L L L

1 1 2 2

1 3

2 2

2 2

12 6 12 6
6 4 6 2
12 6 12 6

6 2 6 4

θ θ

k =

−
−

− − −
−



















 

  

v v

EI
L

L L
L L L L

L L
L L L L

2 2 3 3

2 3

2 2

2 2

12 6 12 6
6 4 6 2
12 6 12 6

6 2 6 4

θ θ

k =

−
−

− − −
−


















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Global FE equation is, 

 

v v v

EI
L

L L
L L L L

L L
L L L L L

L L
L L L L

v

v

v

F
M
F
M
F
M

Y

Y

Y

1 1 2 2 3 3

3

2 2

2 2 2

2 2

1

1

2

2

3

3

1

1

2

2

3

3

12 6 12 6 0 0
6 4 6 2 0 0
12 6 24 0 12 6

6 2 0 8 6 2
0 0 12 6 12 6
0 0 6 2 6 4

θ θ θ

θ

θ

θ

−
−

− − −
−

− − −
−





















































=





























 

Loads and constraints (BC’s) are, 

  
F P M M
v v

Y2 2

1 3 1 3 0
= − =

= = = =
, ,
θ θ

 

Reduced FE equation, 

  EI
L L

v P
M3 2

2

2

24 0
0 8


















=
−






θ

 

Solving this we obtain, 

  
v L

EI
PL
M

2

2

2

24 3θ





=
−









  

From global FE equation, we obtain the reaction forces and 
moments, 
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F
M
F
M

EI
L

L
L L

L
L L

v
P M L
PL M

P M L
PL M

Y

Y

1

1

3

3

3

2

2

2

2

12 6
6 2
12 6

6 2

1
4

2 3

2 3

















=

−
−
− −



























=

+
+

−
− +



















θ

/

/
  

Stresses in the beam at the two ends can be calculated using the 
formula, 

  σ σ= = −x
My
I

 

Note that the FE solution is exact according to the simple beam 
theory, since no distributed load is present between the nodes.  
Recall that, 

  EI d v
dx

M x
2

2 = ( )  

and 

 

dM
dx

V V

dV
dx

q q

=

=

(

(

-  shear force in the beam)

 -  distributed load on the beam)
 

Thus, 

  EI d v
dx

q x
4

4 = ( )  

If q(x)=0, then exact solution for the deflection v is a cubic 
function of x, which is what described by our shape functions. 
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Equivalent Nodal Loads of Distributed Transverse Load 
 

xi j

q

qL/2

i j

qL/2

L

qL2/12qL2/12

 

 

 

 

 

 

This can be verified by considering the work done by the 
distributed load q. 

L

q

L

L

qL

L

qL/2

qL2/12
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Example 2.6 
 

L

x1 2

p

E,I

y

 

 

 

 

 

Given: A cantilever beam with distributed lateral load p as 
shown above. 

Find: The deflection and rotation at the right end, the 
reaction force and moment at the left end. 

Solution: The work-equivalent nodal loads are shown below, 

 

L

x1 2

f

E,I

y

m

 

 

 

 

 

where 

  f pL m pL= =/ , /2 12 2 

Applying the FE equation, we have 
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  EI
L

L L
L L L L

L L
L L L L

v

v

F
M
F
M

Y

Y
3

2 2

2 2

1

1

2

2

1

1

2

2

12 6 12 6
6 4 6 2
12 6 12 6

6 2 6 4

−
−

− − −
−





































=



















θ

θ

 

Load and constraints (BC’s) are, 

  
F f M m
v

Y2 2

1 1 0
= − =

= =
,

θ
 

Reduced equation is, 

  EI
L

L
L L

v f
m3 2

2

2

12 6
6 4

−
−


















=
−






θ

 

Solving this, we obtain, 

  
v L

EI
L f Lm

Lf m
pL EI
pL EI

2

2

2 4

36
2 3

3 6
8
6θ





=
− +

− +








=
−
−









/
/


  (A) 

These nodal values are the same as the exact solution.  Note 
that the deflection v(x) (for 0 < x< 0) in the beam by the FEM is, 
however, different from that by the exact solution.  The exact 
solution by the simple beam theory is a 4th order polynomial of 
x, while the FE solution of v is only a 3rd order polynomial of x. 

If the equivalent moment m is ignored, we have, 

  
v L

EI
L f
Lf

pL EI
pL EI

2

2

2 4

36
2
3

6
4θ









=
−
−









=
−
−









/
/    (B) 

The errors in (B) will decrease if more elements are used.  The 
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equivalent moment m is often ignored in the FEM applications.  
The FE solutions still converge as more elements are applied. 

 From the FE equation, we can calculate the reaction force 
and moment as, 

  
F
M

L
EI

L
L L

v pL
pL

Y1

1

3

2
2

2
2

12 6
6 2

2
5 1





=
−
−


















=






θ

/
/ 2

2


  

where the result in (A) is used.  This force vector gives the total 
effective nodal forces which include the equivalent nodal forces 
for the distributed lateral load p given by, 

  
  

−
−





pL
pL

/
/

2
122

The correct reaction forces can be obtained as follows, 

  


F
M

pL
pL

pL
pL

pL
pL

Y1

1
2 2

2
5 12

2
12 2





=








−
−

−








=








/
/

/
/ /

 

 

Check the results! 
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Example 2.7 
 

L

X1
2

P

E,I

Y

L
3

1 2

k

4
 

 

 

 

 

 

Given: P = 50 kN,  k = 200 kN/m,  L = 3 m,   

  E = 210 GPa,  I = 2×10-4 m4. 

Find: Deflections, rotations and reaction forces. 

Solution:  

The beam has a roller (or hinge) support at node 2 and a 
spring support at node 3.  We use two beam elements and one 
spring element to solve this problem. 

The spring stiffness matrix is given by, 

  
v v
k k
k ks

3 4

k =
−

−










Adding this stiffness matrix to the global FE equation (see 
Example 2.5), we have 
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v v v v

EI
L

L L
L L L

L
L L L

k L
L

k

Symmetry k

v

v

v

v

F
M
F
M
F
M
F

Y

Y

Y

Y

1 1 2 2 3 3 4

3

2 2

2 2

2

1

1

2

2

3

3

4

1

1

2

2

3

3

4

12 6 12 6 0 0
4 6 2 0 0

24 0 12 6
8 6 2

12 6
4

0
0
0
0

0

θ θ θ

θ

θ

θ

−
−

−
−

+ − −



























































=








' '

'



























 

in which 

  k L
EI

k'=
3

 

is used to simply the notation. 

 We now apply the boundary conditions, 

  
v v v
M M F PY

1 1 2 4

2 3 3

0
0

= = = =
= = = −
θ ,

,
 

‘Deleting’ the first three and seventh equations (rows and 
columns), we have the following reduced equation, 

  EI
L

L L L
L k L

L L L
v P3

2 2

2 2

2

3

3

8 6 2
6 12 6

2 6 4

0

0

−
− + −

−






























= −














'

θ

θ
 

Solving this equation, we obtain the deflection and rotations at 
node 2 and node 3, 
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θ

θ

2

3

3

2

12 7

3
7
9

v PL
EI k

L










= −

+














( ' )

  

The influence of the spring k is easily seen from this result. 
Plugging in the given numbers, we can calculate 

  
θ

θ

2

3

3

0 002492
0 01744

0 007475
v











=

−
−

−















.
.

.

rad
m
rad


  

 From the global FE equation, we obtain the nodal reaction 
forces as, 

  
  

F
M
F
F

Y

Y

Y

1

1

2

4

69 78
69 78
116 2
3 488

















=

−
− ⋅



















.
.

.
.

kN
kN m
kN
kN

Checking the results:  Draw free body diagram of the beam 

1 2

50 kN

3

3.488 kN116.2 kN

69.78 kN

69.78 kN⋅m
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 FE Analysis of Frame Structures 
 Members in a frame are considered to be rigidly connected.  
Both forces and moments can be transmitted through their joints.  
We need the general beam element (combinations of bar and 
simple beam elements) to model frames. 
 

Example 2.8 

12 ft

X

1 23000 lb

E, I, A

Y

3

1

2 3 8 ft

500 lb/ft

4

 

Given: E I A= × = =30 10 686 2psi,   65 in. in4 , . .  

Find: Displacements and rotations of the two joints 1 and 2. 

Solution:  

For this example, we first convert the distributed load to its 
equivalent nodal loads. 
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1 23000 lb

3

1

2 3

3000 lb

4

3000 lb

72000 lb-in.

72000 lb-in.

 
In local coordinate system, the stiffness matrix for a general 2-D 
beam element is 

u v u v

EA
L

EA
L

EI
L

EI
L

EI
L

EI
L

EI
L

EI
L

EI
L

EI
L

EA
L

EA
L

EI
L

EI
L

EI
L

EI
L

EI
L

EI
L

EI
L

EI
L

i i i j j jθ θ

k =

−

−

−

−

− − −

−





































0 0 0 0

0 12 6 0 12 6

0 6 4 0 6 2

0 0 0 0

0 12 6 0 12 6

0 6 2 0 6 4

3 2 3 2

2 2

3 2 3

2 2

2
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Element Connectivity Table 
Element Node i (1) Node j (2) 

1 1 2 
2 3 1 
3 4 2 

 

For element 1, we have 
u v u v1 1 1 2 2 2

1 1
410

1417 0 0 1417 0 0
0 0 784 56 4 0 0 784 56 4
0 56 4 5417 0 56 4 2708

1417 0 0 1417 0 0
0 0 784 56 4 0 0 784 56 4
0 56 4 2708 0 56 4 5417

θ θ

k k= = ×

−
−
−

−
− − −

−

























'

. .
. . .

. .
. .

. . .
. .

.

.

 

For elements 2 and 3, the stiffness matrix in local system is, 

u v u vi i i j j j' ' ' ' ' '

' '

. .
. .

. .
. .

θ θ

k k2 3
410

212 5 0 0 212 5 0 0
0 2 65 127 0 2 65 127
0 127 8125 0 127 4063

212 5 0 0 212 5 0 0
0 2 65 127 0 2 65 127
0 127 4063 0 127 8125

= = ×

−
−
−

−
− − −

−

























 

where i=3, j=1 for element 2 and i=4, j=2 for element 3. 
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In general, the transformation matrix T is, 

  T  =

−

−

























l m
m l

l m
m l

0 0 0 0
0 0 0 0

0 0 1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 1

We have 

  l = 0,  m = 1 

for both elements 2 and 3.  Thus, 

   T =

−

−

























0 1 0 0 0 0
1 0 0 0 0 0

0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

Using the transformation relation, 

  k T k T= T '  

we obtain the stiffness matrices in the global coordinate system 
for elements 2 and 3, 
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u v u v3 3 3 1 1 1

2
410

2 65 0 127 2 65 0 127
0 212 5 0 0 212 5 0
127 0 8125 127 0 4063
2 65 0 127 2 65 0 127
0 212 5 0 0 212 5 0
127 0 4063 127 0 8125

θ θ

k = ×

− − −
−

−
−

−
−

























. .
. .

. .
. .

 

and 

u v u v4 4 4 2 2 2

3
410

2 65 0 127 2 65 0 127
0 212 5 0 0 212 5 0
127 0 8125 127 0 4063
2 65 0 127 2 65 0 127
0 212 5 0 0 212 5 0
127 0 4063 127 0 8125

θ θ

k = ×

− − −
−

−
−

−
−

























. .
. .

. .
. .

 

Assembling the global FE equation and noticing the following 
boundary conditions, 

  
u v u v
F F F F
M M

X X Y Y

3 3 3 4 4 4

1 2 1 2

1 2

0
3000 0 3000
72000 72000

= = = = = =
= = = = −
= − ⋅ = ⋅

θ θ
lb lb

lb in. lb in
, ,

, .
,  

we obtain the condensed FE equation, 
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10

144 3 0 127 1417 0 0
0 213 3 56 4 0 0 784 56 4

127 56 4 13542 0 56 4 2708
1417 0 0 144 3 0 127
0 0 784 56 4 0 213 3 56 4
0 56 4 2708 127 56 4 13542

3000
3000

72000
0

3000
72000

4

1

1

1

2

2

2

×

−
−
−

−
− − −

−





















































=

−
−

−



















. .
. . . .

. .
. .

. . . .
. .

u
v

u
v

θ

θ











Solving this, we get 

u
v

u
v

1

1

1

2

2

2
5

0 092
0 00104
0 00139
0 0901
0 0018

388 10

θ

θ





























=

−
−

−
− ×



























−

.
.
.
.
.

.

in.
in.
rad

in.
in.

rad

 

To calculate the reaction forces and moments at the two ends, 
we employ the element FE equations for element 2 and element 
3.  We obtain, 
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F
F
M

X

Y

3

3

3

672 7
2210

60364














=

−

⋅















.

.

lb
lb

lb in

and  

   
F
F
M

X

Y

4

4

4

2338
3825

112641














=

−

⋅















lb
lb

lb in.

Check the results: 

 Draw the free-body diagram of the frame. Equilibrium is 
maintained with the calculated forces and moments. 

3000 lb

3000 lb 3000 lb

72000 lb-in.

72000 lb-in.

2210 lb
672.7 lb

3825 lb

2338 lb

60364 lb-in. 112641 lb-in.
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Chapter 3.   Two-Dimensional Problems 
 

I. Review of the Basic Theory 
 

 In general, the stresses and strains in a structure consist of 
six components: 

  σ σ σ τ τ τx y z xy yz, , , , , zx   for stresses, 

and 

  ε ε ε γ γ γx y z xy yz, , , , , zx   for strains. 

x
z

y
σ x

σ y

σ z

τ yz

τ zx

τ xy

 
Under contain conditions, the state of stresses and strains 

can be simplified.  A general 3-D structure analysis can, 
therefore, be reduced to a 2-D analysis. 
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Plane (2-D) Problems 
• Plane stress: 

σ τ τ εz yz zx z= = = ≠0 ( 0)     (1) 

A thin planar structure with constant thickness and 
loading within the plane of the structure (xy-plane). 

p

y

x

y

z

 
 

• Plane strain: 

ε γ γ σz yz zx z= = = ≠0 ( 0)     (2) 

A long structure with a uniform cross section and 
transverse loading along its length (z-direction). 

p

y

x

y

z
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Stress-Strain-Temperature (Constitutive) Relations 
 For elastic and isotropic materials, we have, 

   (3) 
ε
ε
γ

ν
ν

σ
σ
τ

ε
ε
γ

x

y

xy

x

y

xy

x

y

xy

E E
E E

G

















=
−

−
































+
















1 0
1 0

0 0 1

0

0

0

/ /
/ /

/

or, 

  ε σ ε= +−E 1
0  

where  ε0  is the initial strain, E the Young’s modulus, ν  the 
Poisson’s ratio and G the shear modulus.  Note that, 

  G E
=

+2 1( )ν
        (4) 

which means that there are only two independent materials 
constants for homogeneous and isotropic materials. 

 We can also express stresses in terms of strains by solving 
the above equation, 

 
σ
σ
τ

ν

ν
ν

ν

ε
ε
γ

ε
ε
γ

x

y

xy

x

y

xy

x

y

xy

E
















=
−

−

































−






























1

1 0
1 0

0 0 1 2
2

0

0

0( ) /
 (5) 

or, 

  σ ε σ= +E 0  

where σ ε0 = −E 0  is the initial stress. 
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 The above relations are valid for plane stress case.  For 
plane strain case, we need to replace the material constants in 
the above equations in the following fashion, 

  

E E

G G

→
−

→
−

→

1

1

2ν

ν ν
ν

        (6) 

For example, the stress is related to strain by 

σ
σ
τ

ν ν

ν ν
ν ν

ν

ε
ε
γ

ε
ε
γ

x

y

xy

x

y

xy

x

y

xy

E
















=
+ −

−
−

−

































−






























( )( )

( ) /
1 1 2

1 0
1 0

0 0 1 2 2

0

0

0

in the plane strain case. 

 

Initial strains due to temperature change (thermal loading) 
is given by, 

         (7) 
ε
ε
γ

α
α

x

y

xy

T
T

0

0

0 0

















=














∆
∆

where α  is the coefficient of thermal expansion, ∆T  the change 
of temperature.  Note that if the structure is free to deform under 
thermal loading, there will be no (elastic) stresses in the 
structure. 
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Strain and Displacement Relations 
 For small strains and small rotations, we have, 

  ε ∂
∂

ε ∂
∂

γ ∂
∂

∂
∂x y xy

u
x

v
y

u
y

v
x

= = =, , +   

In matrix form, 

  ,   or  
ε
ε
γ

∂ ∂
∂ ∂

∂ ∂ ∂ ∂

x

y

xy

x
y

y x

u
v

















=
























/
/

/ /

0
0 ε = Du   (8) 

 From this relation, we know that the strains (and thus 
stresses) are one order lower than the displacements, if the 
displacements are represented by polynomials. 
 

Equilibrium Equations 
 In elasticity theory, the stresses in the structure must satisfy 
the following equilibrium equations, 

  

∂σ
∂

∂τ
∂

∂τ
∂

∂σ
∂

x xy
x

xy y
y

x y
f

x y
f

+ + =

+ + =

0

0
       (9) 

where fx and fy are body forces (such as gravity forces) per unit 
volume.  In FEM, these equilibrium conditions are satisfied in 
an approximate sense.
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Boundary Conditions 

 

x

y
p

tx

ty

Su

St

 

 

 

 

 The boundary S of the body can be divided into two parts, 
Su and St.  The boundary conditions (BC’s) are described as, 

u u v v S
t t t t S

u

x x y y

= =
= =

, ,
, ,

on
on t

   (10) 

in which tx and ty are traction forces (stresses on the boundary) 
and the barred quantities are those with known values. 

 In FEM, all types of loads (distributed surface loads, body 
forces, concentrated forces and moments, etc.) are converted to 
point forces acting at the nodes. 
 

Exact Elasticity Solution 
 The exact solution (displacements, strains and stresses) of a 
given problem must satisfy the equilibrium equations (9), the 
given boundary conditions (10) and compatibility conditions 
(structures should deform in a continuous manner, no cracks or 
overlaps in the obtained displacement fields). 
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Example 3.1 
 A plate is supported and loaded with distributed force p as 
shown in the figure.  The material constants are E and ν. 

x

y

p

 
 The exact solution for this simple problem can be found 
easily as follows, 

Displacement: 

  u p
E

x v p
E

y= =, ν−  

Strain: 

  ε ε νx y γ xy
p
E

p
E

= = −, , = 0 

Stress: 

  σ σ τx y xyp= = =, ,0 0 

 Exact (or analytical) solutions for simple problems are 
numbered (suppose there is a hole in the plate!).  That is why we 
need FEM! 
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II.  Finite Elements for 2-D Problems 
 

A General Formula for the Stiffness Matrix 
 Displacements (u, v) in a plane element are interpolated 
from nodal displacements (ui, vi) using shape functions Ni as 
follows, 

  (11) 
u
v

N N
N N

u
v
u
v









=




































=1 2

1 2

1

1

2

2

0 0
0 0

L

L

M

or u Nd

where N is the shape function matrix, u the displacement vector 
and d the nodal displacement vector.  Here we have assumed 
that u depends on the nodal values of u only, and v on nodal 
values of v only. 

 From strain-displacement relation (Eq.(8)), the strain vector 
is, 

 ε ε= = =Du DNd Bd, or    (12) 

where B = DN is the strain-displacement matrix. 
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 Consider the strain energy stored in an element, 

 

( )

( )

U dV

dV dV

dV

T

V

x x y y xy xy

V

T

V

T

V

T T

V

T

= = + +

= =

=

=

∫ ∫

∫ ∫

∫

1
2

1
2

1
2

1
2

1
2

1
2

σ ε σ ε σ ε τ γ

ε ε ε εE E

d B EB d

d kd

dV

 

From this, we obtain the general formula for the element 
stiffness matrix, 

         (13) k B EB= ∫ T

V

dV

Note that unlike the 1-D cases, E here is a matrix which is given 
by the stress-strain relation (e.g., Eq.(5) for plane stress). 

The stiffness matrix k defined by (13) is symmetric since E 
is symmetric.  Also note that given the material property, the 
behavior of k depends on the B matrix only, which in turn on the 
shape functions.  Thus, the quality of finite elements in 
representing the behavior of a structure is entirely determined by 
the choice of shape functions. 

 Most commonly employed 2-D elements are linear or 
quadratic triangles and quadrilaterals.  
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Constant Strain Triangle (CST or T3) 
 This is the simplest 2-D element, which is also called 
linear triangular element. 

x

y

1

3

2

(x1, y1)

(x3, y3)

(x2, y2)

u

v

(x, y)

u1

v1 u2

v2

u3

v3

Linear Triangular Element  
 For this element, we have three nodes at the vertices of the 
triangle, which are numbered around the element in the 
counterclockwise direction. Each node has two degrees of 
freedom (can move in the x and y directions).  The 
displacements u and v are assumed to be linear functions within 
the element, that is, 

 u b b x b y v b b x b= + + y= + +1 2 3 4 5 6,     (14) 

where bi (i = 1, 2, ..., 6) are constants.  From these, the strains 
are found to be, 

 ε ε γx y xyb b b= = b= +2 6 3, , 5     (15) 

which are constant throughout the element.  Thus, we have the 
name “constant strain triangle” (CST). 
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 Displacements given by (14) should satisfy the following 
six equations, 

  

u b b x b y
u b b x b y

v b b x b y

1 1 2 1 3

2 1 2 2 3

3 4 5 3 6

= + +
= + +

= + +
M

1

2

3

Solving these equations, we can find the coefficients b1, b2, ..., 
and b6 in terms of nodal displacements and coordinates.  
Substituting these coefficients into (14) and rearranging the 
terms, we obtain, 

    (16) 
u
v

N N N
N N N

u
v
u
v
u
v









=






































1 2 3

1 2 3

1

1

2

2

3

3

0 0 0
0 0 0

where the shape functions (linear functions in x and y) are  

 

{ }

{ }

{ }

N
A

x y x y y y x x x y

N
A

x y x y y y x x x y

N
A

x y x y y y x x x y

1 2 3 3 2 2 3 3

2 3 1 1 3 3 1 1 3

3 1 2 2 1 1 2 2 1

1
2
1

2
1

2

= − + − + −

= − + − + −

= − + − + −

( ) ( ) (

( ) ( ) (

( ) ( ) (

2 )

)

)

  (17) 

and 
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 A
x y
x y
x y

=
















1
2

1
1
1

1 1

2 2

3 3

det        (18) 

is the area of the triangle (Prove this!). 

 Using the strain-displacement relation (8), results (16) and 
(17), we have,  

 
ε
ε
γ

x

y

xy

A

y y y
x x x

x y x y x y

u
v
u
v
u
v

















= =












































Bd 1
2

0 0 0
0 0 0
23 31 12

32 13 21

32 23 13 31 21 12

1

1

2

2

3

3

(19) 

where xij = xi - xj and yij = yi - yj (i, j = 1, 2, 3).  Again, we see 
constant strains within the element.  From stress-strain relation 
(Eq.(5), for example), we see that stresses obtained using the 
CST element are also constant. 

 Applying formula (13), we obtain the element stiffness 
matrix for the CST element, 

       (20) k B EB B EB= =∫ T

V

TdV tA( )

in which t is the thickness of the element.  Notice that k for CST 
is a 6 by 6 symmetric matrix.  The matrix multiplication in (20) 
can be carried out by a computer program. 
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 Both the expressions of the shape functions in (17) and 
their derivations are lengthy and offer little insight into the 
behavior of the element. 

1

3

2

ξ=0

ξ=1

ξ=a

η=0

η=1

η=b

The Natural Coordinates

(a, b)

 
We introduce the natural coordinates ( , )ξ η  on the triangle, 

then the shape functions can be represented simply by, 

 N N N1 2 3 1= = = − −ξ η ξ η, ,      (21) 

Notice that, 

 N N N1 2 3 1+ + =         (22) 

which ensures that the rigid body translation is represented by 
the chosen shape functions.  Also, as in the 1-D case, 

     (23) Ni =




1
0
,
,

at  node i;
at the other nodes

and varies linearly within the element.  The plot for shape 
function N1 is shown in the following figure.  N2 and N3 have 
similar features. 
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1

3

2

ξ=0

ξ=1

Shape Function N1 for CST

N1

1

 
 We have two coordinate systems for the element: the global 
coordinates (x, y) and the natural coordinates ( , )ξ η .  The 
relation between the two is given by 

 
x N x N x N x
y N y N y N y

= + +
= + +

1 1 2 2 3 3

1 1 2 2 3 3

       (24) 

or, 

 
x x x x
y y y y

= + +
= + +

13 23 3

13 23 3

ξ η
ξ η

        (25) 

where xij = xi - xj and yij = yi - yj (i, j = 1, 2, 3) as defined earlier. 

 Displacement u or v on the element can be viewed as 
functions of (x, y) or ( , )ξ η .  Using the chain rule for derivatives, 
we have, 

 

∂
∂ ξ
∂
∂ η

∂
∂ ξ

∂
∂ ξ

∂
∂ η

∂
∂ η

∂
∂
∂
∂

∂
∂
∂
∂

u

u

x y

x y

u
x
u
y

u
x
u
y



















=





































=



















J     (26) 

where J is called the Jacobian matrix of the transformation. 
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 From (25), we calculate, 

 J J=








 =

−
−











−x y
x y A

y y
x x

13 13

23 23

1 23 13

23 13

1
2

,   (27) 

where det J = − =x y x y A13 23 23 13 2  has been used (A is the area of 
the triangular element. Prove this!). 

 From (26), (27), (16) and (21) we have, 

 

∂
∂
∂
∂

∂
∂ ξ
∂
∂ η

u
x
u
y

A
y y
x x

u

u

A
y y
x x

u u
u u



















=
−

−




























=
−

−










−
−









1
2

1
2

23 13

23 13

23 13

23 13

1 3

2 3

    (28) 

Similarly, 

 

∂
∂
∂
∂

v
x
v
y

A
y y
x x

v v
v v



















=
−

−










−
−









1
2

23 13

23 13

1 3

2 3

    (29) 

Using the results in (28) and (29), and the relations 
ε = = =Du DNd Bd , we obtain the strain-displacement matrix, 

B =
















1
2

0 0
0 0 0
23 31 12

32 13 21

32 23 13 31 21 12

A

y y y
x x

x y x y x y

0
x    (30) 

which is the same as we derived earlier in (19). 
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Applications of the CST Element: 
• Use in areas where the strain gradient is small. 

• Use in mesh transition areas (fine mesh to coarse mesh). 

• Avoid using CST in stress concentration or other crucial 
areas in the structure, such as edges of holes and corners. 

• Recommended for quick and preliminary FE analysis of 
2-D problems. 

 

 

 

 

 

 

 

 

 
Analysis of composite materials (for which the CST is NOT appropriate!) 
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Linear Strain Triangle (LST or T6) 
 This element is also called quadratic triangular element. 

x

y

1

3

2
u1

v1

u2

v2

u3

v3

Quadratic Triangular Element

u4

v4

u5

v5

u6

v6

6 5

4

 
 There are six nodes on this element: three corner nodes and 
three midside nodes.  Each node has two degrees of freedom 
(DOF) as before.  The displacements (u, v) are assumed to be 
quadratic functions of (x, y), 

     (31) 
u b b x b y b x b xy b y
v b b x b y b x b xy b y

= + + + + +

= + + + + +
1 2 3 4

2
5 6

2

7 8 9 10
2

11 12
2

where bi (i = 1, 2, ..., 12) are constants.  From these, the strains 
are found to be, 

 
ε
ε

γ

x

y

xy

b b x b y
b b x b y

b b b b x b b

= + +
= + +

= + + + + +

2 4 5

9 11 12

3 8 5 10 6 11

2
2

2 2( ) ( ) ( y)
   (32) 

which are linear functions.  Thus, we have the “linear strain 
triangle” (LST), which provides better results than the CST. 
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 In the natural coordinate system we defined earlier, the six 
shape functions for the LST element are, 

 

N
N
N
N
N
N

1

2

3

4

5

6

2 1
2 1
2 1

4
4
4

= −
= −
= −
=
=
=

ξ ξ
η η
ζ ζ

ξη
ηζ
ζ ξ

( )
( )
( )

         (33) 

in which ζ ξ η= − −1 .  Each of these six shape functions 
represents a quadratic form on the element as shown in the 
figure. 

Displacements can be written as, 

1

3

2

ξ=0

ξ=1

Shape Function N1 for LST

N11

ξ=1/2
6 5

4

 

      (34) u N u v Ni i
i

i i
i

=
= =
∑

1

6

1

6

, v= ∑

The element stiffness matrix is still given by 
, but here Bk B EB= ∫ T

V

dV TEB is quadratic in x and y.  In 

general, the integral has to be computed numerically. 
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Linear Quadrilateral Element (Q4) 

x

y
1

3

2

u4

v4

u1

v1 u2

v2

u3

v3

Linear Quadrilateral Element

4
ξ

η

ξ = −1 ξ = 1
η = −1

η = 1

 
 There are four nodes at the corners of the quadrilateral 
shape.  In the natural coordinate system ( , )ξ η , the four shape 
functions are, 

 
N N

N N

1 2

3 4

1
4

1 1 1
4

1 1

1
4

1 1 1
4

1 1

= − − = + −

= + + = − +

( )( ), ( )( )

( )( ), ( )( )

ξ η ξ η

ξ η ξ η
  (35) 

Note that  at any point inside the element, as expected. Ni
i=
∑ =

1

4

1

The displacement field is given by 

      (36) u N u v Ni i
i

i i
i

=
= =
∑

1

4

1

4

, v= ∑

which are bilinear functions over the element. 
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Quadratic Quadrilateral Element (Q8) 
 This is the most widely used element for 2-D problems due 
to its high accuracy in analysis and flexibility in modeling. 

x

y
1

3

2

Quadratic Quadrilateral Element

4
ξ

η

ξ = −1 ξ = 1
η = −1

η = 1
6

7

5
8

 
 There are eight nodes for this element, four corners nodes 
and four midside nodes.  In the natural coordinate system ( , )ξ η , 
the eight shape functions are, 

 

N

N

N

N

1

2

3

4

1
4

1 1

1
4

1 1 1

1
4

1 1

1
4

1 1

= − − + +

= + − − +

= + + + −

= − + − +

( )( )(

( )( )(

( )( )(

( )( )(

ξ η ξ η

ξ η η ξ

ξ η ξ η

ξ η ξ η

1

1

1

)

)

)

)

     (37) 

© 1997-2002 Yijun Liu, University of Cincinnati  94 



Lecture Notes:  Introduction to Finite Element Method Chapter 3.   Two-Dimensional Problems 

N

N

N

N

5
2

6
2

7
2

8
2

1
2

1 1

1
2

1 1

1
2

1 1

1
2

1 1

= − −

= + −

= + −

= − −

( )(

( )(

( )(

( )(

η ξ

ξ η

η ξ

ξ η

)

)

)

)

v= ∑

 

Again, we have  at any point inside the element. Ni
i=
∑ =

1

8

1

The displacement field is given by 

      (38) u N u v Ni i
i

i i
i

=
= =
∑

1

8

1

8

,

which are quadratic functions over the element.  Strains and 
stresses over a quadratic quadrilateral element are linear 
functions, which are better representations. 

Notes: 

• Q4 and T3 are usually used together in a mesh with 
linear elements.  

• Q8 and T6 are usually applied in a mesh composed of 
quadratic elements.   

• Quadratic elements are preferred for stress analysis, 
because of their high accuracy and the flexibility in 
modeling complex geometry, such as curved boundaries. 
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Example 3.2 
 A square plate with a hole at the center and under pressure 
in one direction. 

x

y

p

B

A

 
 The dimension of the plate is 10 in. x 10 in., thickness is 
0.1 in. and radius of the hole is 1 in.  Assume E = 10x106 psi, v 
= 0.3 and p = 100 psi.  Find the maximum stress in the plate. 

 

FE Analysis: 

 From the knowledge of stress concentrations, we should 
expect the maximum stresses occur at points A and B on the 
edge of the hole.  Value of this stress should be around 3p (= 
300 psi) which is the exact solution for an infinitely large plate 
with a hole. 
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 We use the ANSYS FEA software to do the modeling 
(meshing) and analysis, using quadratic triangular (T6 or LST), 
linear quadrilateral (Q4) and quadratic quadrilateral (Q8) 
elements.  Linear triangles (CST or T3) is NOT available in 
ANSYS. 

 The stress calculations are listed in the following table, 
along with the number of elements and DOF used, for 
comparison. 

Table.  FEA Stress Results 

Elem. Type No. Elem. DOF Max. σ (psi)

T6 966 4056 310.1 

Q4 493 1082 286.0 

Q8 493 3150 327.1 

... ... ... ... 

Q8 2727 16,826 322.3 

 

Discussions: 

• Check the deformed shape of the plate 
• Check convergence (use a finer mesh, if possible) 
• Less elements (~ 100) should be enough to achieve the 

same accuracy with a better or “smarter” mesh 
• We’ll redo this example in next chapter employing the 

symmetry conditions. 

© 1997-2002 Yijun Liu, University of Cincinnati  97 



Lecture Notes:  Introduction to Finite Element Method Chapter 3.   Two-Dimensional Problems 

FEA Mesh (Q8, 493 elements) 

 
 

FEA Stress Plot (Q8, 493 elements) 
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Transformation of Loads 
 Concentrated load (point forces), surface traction (pressure 
loads) and body force (weight) are the main types of loads 
applied to a structure.  Both traction and body forces need to be 
converted to nodal forces in the FEA, since they cannot be 
applied to the FE model directly.  The conversions of these loads 
are based on the same idea (the equivalent-work concept) which 
we have used for the cases of bar and beam elements. 

Traction on a Q4 element

A
B

L

s

q
qA

qB

A
B

fA

fB

 
 Suppose, for example, we have a linearly varying traction q 
on a Q4 element edge, as shown in the figure.  The traction is 
normal to the boundary.  Using the local (tangential) coordinate 
s, we can write the work done by the traction q as, 

  W t u s q s dq n

L

= ∫ ( ) ( )
0

s

where t is the thickness, L the side length and un the component 
of displacement normal to the edge AB. 

For the Q4 element (linear displacement field), we have 
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 u s s L u s L un nA( ) ( / ) ( / )= − nB+1  

The traction q(s), which is also linear, is given in a similar way, 
  q s s L q s L qA B( ) ( / ) ( / )= − +1

Thus, we have, 

    

[ ] [ ]

[ ]

[ ]

W t u u
s L

s L
s L s L

q
q

ds

u u t
s L s L s L

s L s L s L
ds

q
q

u u tL q
q

q nA nB
A

B

L

nA nB

L
A

B

nA nB
A

B

=
−















 −



















=
− −

−




















=



















∫

∫

1
1

1 1
1

6
2 1
1 2

0

2

2
0

/
/

/ /

( / ) ( / )( / )
( / )( / ) ( / )

 

and the equivalent nodal force vector is, 

 
f
f

tL q
q

A

B

A

B









=















6

2 1
1 2

 

Note, for constant q, we have, 

 
f
f

qtLA

B









=






2

1
1

 

For quadratic elements (either triangular or quadrilateral), 
the traction is converted to forces at three nodes along the edge, 
instead of two nodes. 
 Traction tangent to the boundary, as well as body forces, 
are converted to nodal forces in a similar way. 
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Stress Calculation 
 The stress in an element is determined by the following 
relation, 

        (39) 
σ
σ
τ

ε
ε
γ

x

y

xy

x

y

xy

















=
















=E EBd

where B is the strain-nodal displacement matrix and d is the 
nodal displacement vector which is known for each element 
once the global FE equation has been solved. 

 Stresses can be evaluated at any point inside the element 
(such as the center) or at the nodes.  Contour plots are usually 
used in FEA software packages (during post-process) for users 
to visually inspect the stress results. 

 

The von Mises Stress: 

 The von Mises stress is the effective or equivalent stress for 
2-D and 3-D stress analysis.  For a ductile material, the stress 
level is considered to be safe, if 

 σ σe Y≤  

where σ e  is the von Mises stress and σY  the yield stress of the 
material.  This is a generalization of the 1-D (experimental) 
result to 2-D and 3-D situations. 
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 The von Mises stress is defined by 

σ σ σ σ σ σe = − + − + −
1
2 1 2

2
2 3

2
3 1

2( ) ( ) ( σ )   (40) 

in which σ σ σ1 2, an 3d  are the three principle stresses at the 
considered point in a structure. 

 For 2-D problems, the two principle stresses in the plane 
are determined by 

 
σ

σ σ σ σ
τ

σ
σ σ σ σ

τ

1

2
2

2

2
2

2 2

2 2

P x y x y
xy

P x y x y
xy

=
+

+
−






 +

=
+

−
−






 +

    (41) 

 Thus, we can also express the von Mises stress in terms of 
the stress components in the xy coordinate system.  For plane 
stress conditions, we have, 

 σ σ σ σ σ τe x y x y= + − −( ) (2 3 xy )2      (42) 
 

Averaged Stresses: 

 Stresses are usually averaged at nodes in FEA software 
packages to provide more accurate stress values.  This option 
should be turned off at nodes between two materials or other 
geometry discontinuity locations where stress discontinuity does 
exist. 
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Discussions 

 

1) Know the behaviors of each type of elements: 

T3 and Q4: linear displacement, constant strain and stress; 

T6 and Q8: quadratic displacement, linear strain and stress. 

 

2) Choose the right type of elements for a given problem: 

When in doubt, use higher order elements or a finer mesh. 

 

3) Avoid elements with large aspect ratios and corner angles: 

Aspect ratio = Lmax / Lmin  

where Lmax and Lmin are the largest and smallest characteristic 
lengths of an element, respectively. 

Elements with Bad Shapes

Elements with Nice Shapes
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4) Connect the elements properly: 

  Don’t leave unintended gaps or free elements in FE models. 

 A

B

C

D

Improper connections (gaps along AB and CD)  
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Chapter 4.  Finite Element Modeling and 
Solution Techniques 

 

I. Symmetry 
 

 A structure possesses symmetry if its components are 
arranged in a periodic or reflective manner.  

 

Types of Symmetry: 
• Reflective (mirror, bilateral) symmetry 

• Rotational (cyclic) symmetry 

• Axisymmetry 

• Translational symmetry 

• ... 

 

Examples: 

 … 
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Applications of the symmetry properties: 
• Reducing the size of the problems (save CPU time, disk 

space, postprocessing effort, etc.) 

• Simplifying the modeling task 

• Checking the FEA results 

• ... 

 

 Symmetry of a structure should be fully exploited and 
retained in the FE model to ensure the efficiency and quality of 
FE solutions. 

 

Examples: 

 … 

 

Cautions:  
In vibration and buckling analyses, symmetry concepts, in 

general, should not be used in FE solutions (works fine in 
modeling), since symmetric structures often have antisymmetric 
vibration or buckling modes. 
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II. Substructures (Superelements) 
 

 Substructuring is a process of analyzing a large structure as 
a collection of (natural) components.  The FE models for these 
components are called substructures or superelements (SE). 

 

Physical Meaning: 
A finite element model of a portion of structure. 

 

Mathematical Meaning: 
 Boundary matrices which are load and stiffness matrices 
reduced (condensed) from the interior points to the exterior or 
boundary points. 
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Advantages of Using Substructures/Superelements: 
• Large problems (which will otherwise exceed your 

computer capabilities) 

• Less CPU time per run once the superelements have 
been processed (i.e., matrices have been saved) 

• Components may be modeled by different groups 

• Partial redesign requires only partial reanalysis (reduced 
cost) 

• Efficient for problems with local nonlinearities (such as 
confined plastic deformations) which can be placed in 
one superelement (residual structure) 

• Exact for static stress analysis 

 

Disadvantages: 
• Increased overhead for file management 

• Matrix condensation for dynamic problems introduce 
new approximations 

• ... 
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III.  Equation Solving 
 

Direct Methods (Gauss Elimination): 
• Solution time proportional to NB2 (N is the dimension of 

the matrix, B the bandwidth) 

• Suitable for small to medium problems, or slender 
structures (small bandwidth) 

• Easy to handle multiple load cases 

 

Iterative Methods: 
• Solution time is unknown beforehand 

• Reduced storage requirement 

• Suitable for large problems, or bulky structures (large 
bandwidth, converge faster) 

• Need solving again for different load cases 
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Gauss Elimination - Example: 
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Forward Elimination: 

Form  ; 















−

−
−−

−

3
1

2

330
342

028

)3(
)2(
)1(

(1) + 4 x (2) ⇒  (2): 

  ( ; 















−

−
−

−

3
2

2

330
12140
028

)3(
)2
)1(

(2) + 
3

14 (3) ⇒  (3): 

  ( ; 















−−

−

12
2

2

200
12140
028

)3(
)2
)1(

Back Substitution: 

    or  . 
5.18/)22(

514/)122(
62/12

21

32

3

=+=
=+−=

==

xx
xx

x














=

6
5
51.

x
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Iterative Method - Example: 
The Gauss-Seidel Method 

bAx =       (A is symmetric) 

or  ....,,2,1,
1

Nibxa
N

j
ijij ==∑

=

Start with an estimate  and then iterate using the following: )( 0x

 
....,,2,1for

,1 1

1 1

)()1()1(

Ni

xaxab
a

x
i

j

N

ij

k
jij

k
jiji

ii

k
i

=






 −−= ∑ ∑
−

= +=

++

 

In vector form, 

 [ ],)()1(1)1( kT
L

k
LD

k xAxAbAx −−= +−+  

where 

〉〈= iiD aA    is the diagonal matrix of A, 

LA is the lower triangular matrix of A, 

such that  A  .T
LLD AAA ++=

Iterations continue until solution x converges, i.e. 

 ,)(

)()1(

ε≤
−+

k

kk

x
xx

 

where ε is the tolerance for convergence control. 
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IV. Nature of Finite Element Solutions 
• FE Model – A mathematical model of the real structure, 

based on many approximations. 
• Real Structure -- Infinite number of nodes (physical 

points or particles), thus infinite number of DOF’s. 
• FE Model – finite number of nodes, thus finite number 

of DOF’s. 
 

 Displacement field is controlled (or constrained) by the 
values at a limited number of nodes. 

 

 

 

:elementanonthat Recall 

 

 

Stiffening Effect: 
• FE Model is stiffer tha
• In general, displaceme

magnitudes than the ex
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  Hence, FEM solution of displacement provides a lower 
bound of the exact solution. 
 
 

No. of DOF’s

∆ (Displacement)

Exact Solution

FEM Solutions

 
 
 
 
 
 
 
 
 
 
 

The FEM solution approaches the exact solution from 
below. 

This is true for displacement based FEA! 
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V. Numerical Error 
 

Error Mistakes in FEM (modeling or solution). ≠

 

Type of Errors: 

• Modeling Error (beam, plate … theories) 

• Discretization Error (finite, piecewise …) 

• Numerical Error ( in solving FE equations) 

 

Example (numerical error): 

 

k1 xk21 2

P

u1 u2

 

 
 

 

FE Equations: 

  
  









=













 +−
−

02

1

211

11 P
u
u

kkk
kk

and   . 21kkDet =K

The system will be singular if k2 is small compared with k1. 
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1u

2u

1
21

1
2 u

kk
ku
+

=

1
12 k

Puu −=

k2 >> k1 (two line apart):
 System well conditioned.

P/k1

1u

2u

1
21

1
2 u

kk
ku
+

=

1
12 k

Puu −=

k2 << k1 (two lines close):
 System ill-conditioned.

P/k1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Large difference in stiffness of different parts in FE 
model may cause ill-conditioning in FE equations. 
Hence giving results with large errors. 

• Ill-conditioned system of equations can lead to large 
changes in solution with small changes in input 
(right hand side vector). 
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VI. Convergence of FE Solutions 
As the mesh in an FE model is “refined” repeatedly, the FE 

solution will converge to the exact solution of the mathematical 
model of the problem (the model based on bar, beam, plane 
stress/strain, plate, shell, or 3-D elasticity theories or 
assumptions). 

 

Type of Refinements: 
h-refinement:  reduce the size of the element (“h” refers to the 

typical size of the elements); 

p-refinement:  Increase the order of the polynomials on an 
element (linear to quadratic, etc.;  “h” refers to 
the highest order in a polynomial); 

r-refinement:  re-arrange the nodes in the mesh; 

hp-refinement:  Combination of the h- and p-refinements 
(better results!). 

 

Examples: 
 … 
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VII. Adaptivity (h-, p-, and hp-Methods) 
• Future of FE applications 

• Automatic refinement of FE meshes until converged 
results are obtained 

• User’s responsibility reduced: only need to generate a 
good initial mesh 

 

Error Indicators: 
Define, 

σ --- element by element stress field (discontinuous), 

σ*--- averaged or smooth stress (continuous), 

σE = σ - σ* --- the error stress field. 
 

Compute strain energy, 

 ∫∑ −

=

==
iV

T
i

M

i
i dVUUU σEσ 1

1 2
1, ; 

 ∫∑ −

=

==
i

i
V

T
M

i
i dVUUU *1**

1

**

2
1, σEσ ; 

 ∫∑ −

=

==
iV

E
T
EiE

M

i
iEE dVUUU σEσ 1

1 2
1, ; 

where M is the total number of elements, V  is the volume of the 
element i. 

i
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One error indicator --- the relative energy error: 

 )10(.
2/1

≤≤







+

= ηη
E

E

UU
U  

 

The indicator η is computed after each FE solution.  Refinement 
of the FE model continues until, say 

η ≤ 0.05. 

=> converged FE solution. 
 

Examples: 
 … 
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Chapter 5.  Plate and Shell Elements 
 

I. Plate Theory 
• Flat plate 
• Lateral loading 

• Bending behavior dominates 
 
Note the following similarity: 
1-D straight beam model  2-D flat plate model 

 

Applications:  
• Shear walls 
• Floor panels 

• Shelves 

• … 
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Forces and Moments Acting on the Plate: 

 

Stresses

 

© 1997-2002 Y
Mxy

Mx

Qx

Mxy

My

Qy

x

y

z

Mid surface

q(x,y)

t

∆x

∆y

: 
σx
τxz

x

y

z

τxy

σy

τxy

τyz
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Relations Between Forces and Stresses 
Bending moments (per unit length): 

       (1) )

)

)

)

)

/(,
2/

2/
mmNzdzM

t

t xx ⋅= ∫−
σ

       (2) /(,
2/

2/
mmNzdzM

t

t yy ⋅= ∫−
σ

 

Twisting moment (per unit length): 

       (3) /(,
2/

2/
mmNzdzM

t

t xyxy ⋅= ∫−
τ

 

Shear Forces (per unit length): 

        (4) /(,
2/

2/
mNdzQ

t

t xzx ∫−
= τ

        (5) /(,
2/

2/
mNdzQ

t

t yzy ∫−
= τ

 

Maximum bending stresses: 

 2max2max

6
)(,6)(

t
M

t
M y

y
x

x ±=±= σσ .      (6) 

• Maximum stress is always at 2/tz ±=  
• No bending stresses at midsurface (similar to the beam 

model) 
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Thin Plate Theory ( Kirchhoff Plate Theory) 
 

Assumptions (similar to those in the beam theory): 

A straight line along the normal to the mid surface remains 
straight and normal to the deflected mid surface after loading, 
that is, these is no transverse shear deformation: 

0== yzxz γγ . 
 

Displacement: 

x

z

w

x
w

∂
∂

 
 

.

,

)(),,(

y
wzv

x
wzu

deflectionyxww

∂
∂
∂
∂

−=

−=

=

        (7) 

© 1997-2002 Yijun Liu, University of Cincinnati  122 



Lecture Notes:  Introduction to Finite Element Method                                       Chapter 5.  Plate and Shell Elements 

Strains: 

.2

,

,

2

2

2

2

2

yx
wz

y
wz

x
wz

xy

y

x

∂∂
∂γ

∂
∂ε

∂
∂ε

−=

−=

−=

           (8) 

Note that there is no stretch of the mid surface due to the 
deflection (bending) of the plate. 

 

Stresses (plane stress state): 

































−
−

=
















xy

y

x

xy

y

x E

γ
ε
ε

ν
ν

ν

ν
τ
σ
σ

2/)1(00
01
01

1 2 , 

or, 





























∂∂
∂
∂
∂
∂
∂

















−
−

−=
















yx
w

y
w

x
w

Ez

xy

y

x

2

2

2

2

2

2

)1(00
01
01

1
ν

ν
ν

ν
τ
σ
σ

.                    (9) 

Main variable: deflection ),( yxww = . 
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Governing Equation: 

),(4 yxqwD =∇ ,         (10) 

where 

),2( 4

4

22

4

4

4
4

yyxx ∂
∂

∂∂
∂

∂
∂

++≡∇  

)1(12 2

3

ν−
=

EtD    (the bending rigidity of the plate), 

q = lateral distributed load (force/area). 
 

Compare the 1-D equation for straight beam:  

)(4

4

xq
dx

wdEI = . 

 

Note:  Equation (10) represents the equilibrium condition in 
the z-direction.  To see this, refer to the previous figure showing 
all the forces on a plate element.  Summing the forces in the z-
direction, we have, 

,0=∆∆+∆+∆ yxqxQyQ yx  

which yields, 

 0),( =+
∂

∂
+

∂
∂ yxq

y
Q

x
Q yx . 

Substituting the following relations into the above equation, we 
obtain Eq. (10). 

© 1997-2002 Yijun Liu, University of Cincinnati  124 



Lecture Notes:  Introduction to Finite Element Method                                       Chapter 5.  Plate and Shell Elements 

Shear forces and bending moments: 

 ,,
y

M
x

M
Q

y
M

x
MQ yxy

y
xyx

x ∂
∂

+
∂

∂
=

∂
∂

+
∂

∂
=  

 







∂
∂

+
∂
∂

=







∂
∂

+
∂
∂

= 2

2

2

2

2

2

2

2

,
x
w

y
wDM

y
w

x
wDM yx νν . 

 

 The fourth-order partial differential equation, given in (10) 
and in terms of the deflection w(x,y), needs to be solved under 
certain given boundary conditions. 

 

Boundary Conditions: 

Clamped:    0,0 =
∂
∂

=
n
ww ;   (11) 

Simply supported:  0,0 == nMw ;   (12) 

Free:    0,0 == nn MQ ;   (13) 

where n is the normal direction of the boundary.  Note that the 
given values in the boundary conditions shown above can be 
non-zero values as well. 

boundary

ns
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Examples: 
 A square plate with four edges clamped or hinged, and 
under a uniform load q or a concentrated force P at the center C. 

y

z

Given: E, t, and ν = 0.3

C

L

L

x

 

 For this simple geometry, Eq. (10) with boundary condition 
(11) or (12) can be solved analytically.  The maximum 
deflections are given in the following table for the different 
cases. 

 

Deflection at the Center (wc) 
 Clamped Simply supported 

Under uniform load q 0.00126 qL4/D 0.00406 qL4/D 

Under concentrated 
force P 

0.00560 PL2/D 0.0116 PL2/D 

in which:  D= Et3/(12(1-v2)). 

 These values can be used to verify the FEA solutions. 
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Thick Plate Theory (Mindlin Plate Theory) 
If the thickness t of a plate is not “thin”, e.g.,  10/1/ ≥Lt   

(L = a characteristic dimension of the plate), then the thick plate 
theory by Mindlin should be applied. This theory accounts for 
the angle changes within a cross section, that is, 

0,0 ≠≠ yzxz γγ . 

This means that a line which is normal to the mid surface before 
the deformation will not be so after the deformation. 

x

z

w

x
w

∂
∂









∂
∂

−≠
x
wyθ

 
 
New independent variables: 

xθ  and yθ :  rotation angles of a line, which is normal to the 
mid surface before the deformation, about x- and y-axis, 
respectively. 
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New relations: 

xy zvzu θθ −== , ;       (14) 

.

,

),(

,

,

xyz

yxz

xy
xy

x
y

y
x

y
w
x
w

xy
z

y
z

x
z

θ
∂
∂γ

θ
∂
∂γ

∂
∂θ

∂
∂θ

γ

∂
∂θε

∂
∂θ

ε

−=

+=

−=

−=

=

         (15) 

Note that if we imposed the conditions (or assumptions) 
that  

 ,0,0 =−==+= xyzyxz y
w

x
w θ

∂
∂γθ

∂
∂γ     

then we can recover the relations applied in the thin plate theory. 

 Main variables:  ),(and),(),,( yxyxy yxxw θθ . 

 The governing equations and boundary conditions can be 
established for thick plate based on the above assumptions. 
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II.  Plate Elements 
 

Kirchhoff Plate Elements: 
 

 4-Node Quadrilateral Element 

DOF at each node:   
y
w

y
ww

∂
∂

∂
∂ ,, . 

x

yz

t
1 2

34

11
1 ,, 








∂
∂









∂
∂

y
w

x
ww

22
2 ,, 








∂
∂









∂
∂

y
w

x
ww

Mid surface

On each element, the deflection w(x,y) is represented by 

∑
=






 ++=
4

1
)()(),(

i
iyiixiii y

wN
x
wNwNyxw

∂
∂

∂
∂ , 

where Ni, Nxi and Nyi are shape functions. This is an 
incompatible element!  The stiffness matrix is still of the form 

 , ∫=
V

T dVEBBk

where B is the strain-displacement matrix, and E the stress-
strain matrix. 
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Mindlin Plate Elements: 
 
 4-Node Quadrilateral   8-Node Quadrilateral 

x

yz

t1 2

34

5

6

7

8

 

x

yz

t
1 2

34

DOF at each node:  w, θx and θy. 

On each element: 

.),(

,),(

,),(

1

1

1

∑

∑

∑

=

=

=

=

=

=

n

i
yiiy

n

i
xiix

n

i
ii

Nyx

Nyx

wNyxw

θθ

θθ   

 

• Three independent fields. 
• Deflection w(x,y) is linear for Q4, and quadratic for Q8. 
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Discrete Kirchhoff Element: 
 Triangular plate element (not available in ANSYS). 

 Start with a 6-node triangular element, 

 DOF at corner nodes: yxy
w

x
ww θθ

∂
∂

∂
∂ ,,,, ; 

x

yz

t
1 2

3

4

5

6

 DOF at mid side nodes: yx θθ , . 

 Total DOF = 21. 

 Then, impose conditions 0== yzxz γγ , etc., at selected 
nodes to reduce the DOF (using relations in (15)).  Obtain: 

x

yz

1 2

3

 At each node: 






=





=

y
w

x
ww yx ∂

∂θ
∂
∂θ ,, . 

 Total DOF = 9  (DKT Element). 

• Incompatible w(x,y);  convergence is faster (w is cubic 
along each edge) and it is efficient. 
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Test Problem: 

y

z

L/t = 10, ν = 0.3

C

L

L

P

x

 

ANSYS 4-node quadrilateral plate element. 

 

ANSYS Result for wc  

Mesh wc (× PL2/D) 

2×2 0.00593 

4×4 0.00598 

8×8 0.00574 

16×16 0.00565 

: : 
Exact Solution 0.00560 

 

Question: Converges from “above”?  Contradiction to what 
we learnt about the nature of the FEA solution? 

Reason: This is an incompatible element ( See comments 
on p. 177). 
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III.  Shells and Shell Elements 
 

Shells – Thin structures witch span over curved surfaces. 

 

Example: 

• Sea shell, egg shell (the wonder of the nature); 
• Containers, pipes, tanks; 
• Car bodies; 
• Roofs, buildings (the Superdome), etc. 

 
Forces in shells: 

Membrane forces + Bending Moments 

(cf.  plates:  bending only) 
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Example: A Cylindrical Container. 

p p

internal forces:

membrane stresses
dominate

p p

 

Shell Theory:  
• Thin shell theory 

• Thick shell theory 

Shell theories are the most complicated ones to formulate 
and analyze in mechanics (Russian’s contributions). 

 

• Engineering ≠ Craftsmanship  
• Demand strong analytical skill 

© 1997-2002 Yijun Liu, University of Cincinnati  134 



Lecture Notes:  Introduction to Finite Element Method                                       Chapter 5.  Plate and Shell Elements 

Shell Elements: 

+

plane stress element plate bending element

flat shell element

 
 cf.:   bar + simple beam element =>  general beam element. 
 

 DOF at each node: 
 

Q4 or Q8 shell element. 

u

v
w

θx
θy

 

© 1997-2002 Yijun Liu, University of Cincinnati  135 



Lecture Notes:  Introduction to Finite Element Method                                       Chapter 5.  Plate and Shell Elements 

Curved shell elements: 
 

u

v
w

θx
θy

θz

i

i

 

• Based on shell theories;  
• Most general shell elements (flat shell and plate elements 

are subsets);  
• Complicated in formulation. 
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Test Cases: 

AR
80o

Roof

R

A

F

F

L/2
L/2

Pinched Cylinder

A

F

F

F

F

R

Pinched Hemisphere

q

A

F2

F1

b

L

Twisted Strip (90o)

 

 Check the Table, on page 188 of Cook’s book, for values 
of the displacement ∆A under the various loading 
conditions. 

 

Difficulties in Application: 

• Non uniform thickness (turbo blades, vessels with 
stiffeners, thin layered structures, etc.); 

• Should turn to 3-D theory and apply solid elements.
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Chapter 6.  Solid Elements for 3-D  
Problems 

 

I. 3-D Elasticity Theory 
Stress State:  
      y 

                    F 

 

 

                x 

     z 

               

               
y

              
             
             
             
             
             
             
             
  

yx

yzτ

zyτ

zxτ
zσ

xzτ

xσ

xyτ

σ

τ

z, w 

x, u 

y , v 
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{ } [ ] )1(, ij

zx

yz

xy

z

y

x

or σ

τ
τ
τ
σ
σ
σ

σ





























==σ  

Strains: 

{ } [ ] )2(, ij

zx

yz

xy

z

y

x

or ε

γ
γ
γ
ε
ε
ε

ε

























==ε  

Stress-strain relation: 

























































−

−

−
−

−
−

−+
=





























zx

yz

xy

z

y

x

zx

yz

xy

z

y

x

v

v

v
vvv

vvv
vvv

vv
E

γ
γ
γ
ε
ε
ε

τ
τ
τ
σ
σ
σ

2
2100000

0
2
210000

00
2
21000

0001
0001
0001

)21)(1(

 
or )3(Eεσ =  
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Displacement: 

  )4(
),,(
),,(
),,(

3

2

1














=














=

u
u
u

zyxw
zyxv
zyxu

u

 

Strain-Displacement Relation: 

)5(,,

,,,

x
w

z
u

z
v

y
w

y
u

x
v

z
w

y
v

x
u

xzyzxy

zyx

∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

=

∂
∂

=
∂
∂

=
∂
∂

=

γγγ

εεε
 

or 

( )

( ) notation)tensor (
2
1

simply,or 

3,2,1,,
2
1

,, ijjiij

i

j

j

i
ij

uu

ji
x
u

x
u

+=

=
∂
∂

+
∂
∂

= 






ε

ε
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 Equilibrium Equations:   

0
or

,0

)6(,0

,0

, =+

=+
∂

∂
+

∂
∂

+
∂

∂

=+
∂

∂
+

∂
∂

+
∂

∂

=+
∂

∂
+

∂
∂

+
∂

∂

ijij

z
zzyzx

y
yzyyx

x
xzxyx

f

f
zyx

f
zyx

f
zyx

σ

σττ

τστ

ττσ

 

 

Boundary Conditions (BC’s): 

) traction(
)7()(,

)(,

jiji

ii

uii

nt
tractionspecifiedontt

ntdisplacemespecifiedonuu

σ
σ

=
Γ=
Γ=

 

 
 

                                                            

   p 
    n  

uΓ

σΓ
)( σΓ+Γ=Γ u  

 

Stress Analysis: 
 Solving equations in (3)
provides the stress, strain and
for 15 unknowns for 3-D pro
difficult to find! 
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 (6) under the BC’s in (7) 
ement fields (15 equations 
Analytical solutions are 
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II. Finite Element Formulation 
Displacement Field: 

  v =  

i

N

i
i

i

N

i
i

N

i
ii

wNw

vN

uNu

∑

∑

∑

=

=

=

=

=

1

1

1

)8(

                              Nodal values  
In matrix form: 

)9(

)13(

)33()13(

2

2

2

1

1

1

21

21

21

0000
0000
0000

×

××






































=















N

N

w
v
u
w
v
u

NN
NN

NN

w
v
u

M

L

L

L
 

or        dNu =

        
 Using relations (5) and (8), we can derive the strain vector 
 
     ε =B d  
         (6×1)  (6×3N)×(3N×1) 
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Stiffness Matrix:  
 
 )10(∫=

v

T dvBEBk  

 (3×N)    (3N×6)×(6×6)×(6×3N) 
 
 Numerical quadratures are often needed to evaluate the 
above integration. 
 
 Rigid-body motions for 3-D bodies (6 components): 
 3 translations, 3 rotations. 
 These rigid-body motions (causes of singularity of the 
system of equations) must be removed from the FEA model to 
ensure the quality of the analysis. 
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III. Typical 3-D Solid Elements 
Tetrahedron: 
 
 
 
 
  

 

Hexahedron (
 
 
 
 
 

Penta: 
 
 
 
 
 
 
Avoid using th
stress analysis 
deformation or

© 1997-2002 Yijun Liu, U
linear (4 nodes)             quadratic (10 nodes)
brick): 

 
linear (8 nodes)           quadratic (20 nodes)
) 

e
(I
 v

ni
linear (6 nodes)            quadratic  (15 nodes
 linear (4-node) tetrahedron element in 3-D 
naccurate!  However, it is OK for static 
ibration analysis). 

versity of Cincinnati  144 



Lecture Notes:  Introduction to Finite Element Method                          Chapter 6.  Solid Elements for 3-D Problems 

Element Formulation: 
Linear Hexahedron Element 
                 3 

                                                4             
       y  8       7     2 
                                                  1          
                                        5               6  
                                        x                       
                                 z      mapping (xyz↔ξηζ) 

      (-1≤ ξ,η,ζ ≤ 1) 
         η 
            (-1,1,-1) 4                            3 (1,1,-1) 
      (-1,1,1) 8            7  (1,1,1) 
                     o                                 ξ 
        (-1,-1,-1)   1             2 (1,-1,-1) 

             (-1,-1,1) 5        6 (1,-1,1) 

                             ζ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Displacement field in the element:  

)11(,,
8

1

8

11

8

1
∑ ∑∑

= ==

===
i i

iiii
i

ii wNwvNvuNu  
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Shape functions:  

 

.)1()1()1(
8
1),,(

)12(,)1()1()1(
8
1),,(

,)1()1()1(
8
1),,(

,)1()1()1(
8
1),,(

8

3

2

1

ζηξζηξ

ζηξζηξ

ζηξζηξ

ζηξζηξ

++−=

−++=

−−+=

−−−=

N

N

N

N

MM

 

Note that we have the following relations for the shape 
functions: 

 
.1),,(

.8,,2,1,,),,(
8

1
∑

=

=

==

i
i

ijjjji

N

jiN

ζηξ

δζηξ L

 

 
 Coordinate Transformation (Mapping): 

  )13(.,,
8

1

8

1

8

1
∑∑ ∑

== =

===
i

ii
i i

iiii zNzyNyxNx

The same shape functions are used as for the displacement field. 

⇒ Isoparametric element. 
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Jacobian Matrix:  

 

matrixJacobian
z
u
y
u
x
u

zyx

zyx

zyx

u

u

u

J≡



























∂
∂
∂
∂
∂
∂























∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=



























∂
∂
∂
∂
∂
∂

)14(

ζζζ

ηηη

ξξξ

ζ

η

ξ

 

 ⇒ 







∂
∂

=
∂
∂



























∂
∂
∂
∂
∂
∂

=



























∂
∂
∂
∂
∂
∂

∑
=

− .,,
8

1

1 etcuNu

u

u

u

z
u
y
u
x
u

i
i

i

ξξ

ζ

η

ξ

J  

and 

 )15(,1



























∂
∂
∂
∂
∂
∂

=



























∂
∂
∂
∂
∂
∂

−

ζ

η

ξ

v

v

v

z
v
y
v
x
v

J  

also for w. 
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⇒ 

dBε ==






































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∂

+
∂
∂

∂
∂

+
∂
∂

∂
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+
∂
∂

∂
∂
∂
∂
∂
∂

=





























= )15(use

zx

yz

xy

z

y

x

x
w

z
u

z
v

y
w

y
u

x
x

z
w
y
v
x
u

L

γ
γ
γ
ε
ε
ε

 
where d is the nodal displacement vector, 
i.e.,  
   )16(dBε=

                         (6×1)   (6×24)×(24×1) 
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Strain energy, 

 

)17(
2
1

2
1

)(
2
1

2
1

dBEBd

εEε

εEεεσ






=

=

==

∫

∫

∫∫

V

TT

V

T

V

T

V

T

dV

dV

dVdVU

 

 
Element stiffness matrix, 
 )18(∫=

V

T dVBEBk  

    (24×24)    (24×6)×(6×6)×(6×24) 

 
In ξηζ  coordinates:  
 )19()det( ζηξ ddddV J=  

⇒ )20()(det
1

1

1

1

1

1
∫ ∫ ∫
− − −

= ζηξ dddT JBEBk  

                 ( Numerical integration) 
 

• 3-D elements usually do not use rotational DOFs. 
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Treatment of distributed loads: 
    Distributed loads ⇒ Nodal forces 
 
 
 
 
                   Area =A                          Nodal forces for 20-node 

        pA/3       pA/12 

   p 

                                                                 Hexahedron  
Stresses: 
  dBEεEσ ==

 
Principal stresses: 

.,, 321 σσσ  

 
von Mises stress: 

2
13

2
32

2
21 )()()(

2
1 σσσσσσσσ −+−+−== VMe . 

 
 Stresses are evaluated at selected points (including nodes) 
on each element.  Averaging (around a node, for example) may 
be employed to smooth the field. 
 
Examples:  … 
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Solids of Revolution (Axisymmetric Solids) 
 
 
 
 
 
                Baseball bat                                 shaft  
 
Apply cylindrical coordinates: 
    ( x, y, z)   ⇒   (r, θ, z) 

θσ

zσ

rzτ

rσ
  r 

 

r, u
θ

z, w

z, w

  r, u 
θ
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Displacement field: 
 

( )componentntialcircumfereNo),(,),( −== vzrwwzruu  

 
Strains: 

 
)21()0(,

,,,

==
∂
∂

+
∂
∂

=

∂
∂

==
∂
∂

=

θθ

θ

γγγ

εεε

zrrz

zr

z
u

r
w

z
w

r
u

r
u

 

 u

rdθ

(r+u)dθ  
dθ
r 

Stresses:  

)22(

2
21000

01
01
01

)21()1(






































−
−

−
−

−+
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




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




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


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z

r

rz

z

r

v
vvv

vvv
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E

γ
ε
ε
ε

τ
σ
σ
σ

θθ  
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Axisymmetric Elements 
 
 

3 

2 

1

3

2 
r, u 

η

14

2
r, u 

3  
 ξ
 

1  
 

  4-node element (ring)   3-node element  (ring)  
 

 )23(∫=
V

T dzdrdr θBEBk  

or 

  

)24()(det2

)(det

1

1

1

1

2

0

1

1

1

1

ηξπ

θηξ
π

ddr

dddr

T

T

∫ ∫

∫ ∫ ∫

− −

− −

=

=

JBEB

JBEBk
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Applications 
• Rotating Flywheel: 
 

r

ω  angular velocity (rad/s) z
 
 
 
 
 
 
Body forces: 

  
)forcenalgravitatio(

)forceinertiall/centrifugaradialequivalent(2

gf

rf

z

r

ρ

ωρ

−=

=
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• Cylinder Subject to Internal Pressure: 
 

0r

02)( rpq π=

 
p 

 
 
 
 
 
• Press Fit: 
 
 
 

                          ring ( Sleeve)                           shaft 

0r
ir

δ+ir

MPC
uu io

⇒
=− δ

:irrat =  

 

“i”  “o” 
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• Belleville (Conical) Spring: 

r 

δ

z 

δ 

p 

 

p  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 This is a geometrically nonlinear (large deformation) 
problem and iteration method (incremental approach) needs to 
be employed. 
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Chapter 7.  Structural Vibration and 
Dynamics 

 
• Natural frequencies and modes F(t)
• Frequency response (F(t)=Fo sinωt) 
• Transient response (F(t) arbitrary) 

 

I. Basic Equations 
A. Single DOF System 
                                                          k

 
                                                        c

m

m

f=f(t)

f(t)uc
ku
&










force -)(
damping -
stiffness -
mass -

tf
c
k
m

x, u 

 
 

 
 
 

 From Newton’s law of motion (ma = F), we have 
ucukf(t)um &&& −−= , 

i.e. 

f(t)ukucum =++ &&& ,                                                     (1) 

where u is the displacement, dtduu / =&  and  ./  22 dtudu =&&
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Free Vibration:  f(t) = 0 and no damping (c = 0) 

Eq. (1) becomes 

0=+ ukum && .                                                      (2) 
(meaning: inertia force + stiffness force = 0) 

Assume:   

t)(Uu(t) ωsin= , 

where ω is the frequency of oscillation, U the amplitude. 

Eq. (2) yields 

  0sinsin2 =+− t)ω(Ukt)ω(mωU

i.e.,  

[ ] 02 =+− Ukmω . 

For nontrivial solutions for U, we must have 

[ ] 02 =+− kmω ,  

which yields 

m
k

=ω .                      (3) 

This is the circular natural frequency of the single DOF 
system (rad/s).  The cyclic frequency (1/s = Hz) is 

 π
ω
2

=f ,                      (4) 
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u  

t  

U  

U  

T = 1 / f  

U n d a m p e d  F r e e  V ib r a t io n  

u = U s in w t   

 

 

 

 

With non-zero damping c, where 

mkmcc c 220 ==<< ω     (cc = critical damping)    (5) 

we have the damped natural frequency: 
21 ξωω −=d ,                              (6) 

where 
cc

c
=ξ   (damping ratio). 

For structural damping: 0 15.0<≤ ξ   (usually 1~5%) 

ωω ≈d .                                        (7) 

Thus, we can ignore damping in normal mode analysis. 
u  

 
t 

 

 

  Damped Free Vibration 
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B. Multiple DOF System 
Equation of Motion 

Equation of motion for the whole structure is 

)(tfKuuCuM =++ &&& ,                (8) 

in which:  u  nodal displacement vector, 
   M  mass matrix, 
   C  damping matrix, 
   K  stiffness matrix, 
   f   forcing vector. 

Physical meaning of Eq. (8): 
Inertia forces + Damping forces + Elastic forces  

= Applied forces 
 
Mass Matrices 

Lumped mass matrix (1-D bar element): 
                1    ρ,A,L    2                        ρ ρ
               u1              u2 21

ALm =
22
ALm =

Element mass matrix is found to be 

44 344 21
matrix diagonal

2
0

0
2

















= AL

AL

ρ

ρ

m
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In general, we have the consistent mass matrix given by 

                                                   (9) dV
V

T∫= NNm ρ

where N is the same shape function matrix as used for the 
displacement field. 
This is obtained by considering the kinetic energy: 

       

( )

( ) ( )

uNNu

uNuN

umu

m

&
43421

&

&&

&&&

&&

∫

∫

∫∫

=

=

==

=Κ

V

TT

V

T

V

T

V

T

dV

dV

dVuudVu

mv

ρ

ρ

ρρ

2
1
2
1    

2
1 

2
1    

)
2
1 (cf.                              

2
1

2

2

 

  

Bar Element (linear shape function): 

   (10) 

[ ]

                      
3/16/1
6/13/1

    

1
1

2

1

u
u

AL

ALd
V

&&

&&








=

−






 −
= ∫

ρ

ξξξ
ξ

ξ
ρm

 
Element mass matrices: 
⇒ local coordinates ⇒ to global coordinates 
⇒ assembly of the global structure mass matrix M. 
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Example 
Simple Beam Element: 
 

1

1

    θ
v

2

2

    θ
v

ρ, A, L  
 

      

422313
221561354
313422
135422156

420
    

2

2

1

1

22

22

θ

θρ

ρ

&&
&&

&&
&&

v

v

LLLL
LL

LLLL
LL

AL

dVT



















−−−
−
−
−

=

= ∫V
NNm

 (11) 

 
 
 
Units in dynamic analysis (make sure they are consistent): 

 Choice I Choice II 
t (time) 

L (length) 
m (mass) 
a (accel.) 
f (force) 

ρ (density) 

s 
m 
kg 

m/s2 
N 

kg/m3 

s 
mm 
Mg 

mm/s2 

N 
Mg/mm3 
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II. Free Vibration 
 

Study of the dynamic characteristics of a structure: 
• natural frequencies 
• normal modes (shapes) 
 
Let f(t) = 0 and C = 0 (ignore damping) in the dynamic 
equation (8) and obtain 
          0KuuM =+&&         (12) 
Assume that displacements vary harmonically with time, that 
is, 

  
),sin()(

),cos()(
),sin()(

2 tt
tt

tt

ωω

ωω
ω

uu
uu

uu

−=

=
=

&&

&  

where u  is the vector of nodal displacement amplitudes. 
Eq. (12) yields,  
[ ] 0uMK =− 2ω         (13) 
This is a generalized eigenvalue problem (EVP). 
 
Solutions? 
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Trivial solution: 0u = for any values of ω (not interesting). 
 
Nontrivial solutions: 0u ≠ only if     

02 =− MK ω          (14) 

This is an n-th order polynomial of ω2, from which we can 
find n solutions (roots) or eigenvalues ωi. 
ωi (i = 1, 2, …, n) are the natural frequencies (or 
characteristic frequencies) of the structure. 
ω1 (the smallest one) is called the fundamental frequency. 
 
For each ωi , Eq. (13) gives one solution (or eigen) vector 

[ ] 0uMK =− ii
2ω . 

iu  (i=1,2,…,n) are the normal modes (or natural modes, 
mode shapes, etc.).  
 
Properties of Normal Modes 

         0=j
T
i uKu , 

 0=j
T
i uMu ,                       for i ≠ j,                  (15) 

if ji ωω ≠ . That is, modes are orthogonal (or independent) to 
each other with respect to K and M matrices.  
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Normalize the modes: 

.

,1
2
ii

T
i

i
T
i

ω=

=

uKu

uMu
                                       (16) 

 
 
Note: 
• Magnitudes of displacements (modes) or stresses in normal 

mode analysis have no physical meaning. 
• For normal mode analysis, no support of the structure is 

necessary. 
ωi = 0  ⇔  there are rigid body motions of the whole or 
a part of the structure.  
⇒ apply this to check the FEA model (check for 
mechanism or free elements in the models). 

• Lower modes are more accurate than higher modes in the 
FE calculations (less spatial variations in the lower modes  
⇒ fewer elements/wave length are needed). 
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Example: 
  

L

x1 2

v2

ρ, A, EI

y

θ2

 

 
                     

 
 

[ ]

.
422
22156

420
            ,

46
612

,
0
0

223

2

22


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




−

−
=








−

−
=









=








−

LL
LAL

LL
L

L
EI

v

ρ

θ
ω

MK

MK

 

EVP:  
                    

 in which λ = . EIAL 420/42 ρω

,0
44226
22615612

22 =
−+−
+−−

λλ
λλ

LLLL
LL

       Solving the EVP, we obtain, 
 

.62.7
1v

    ,81.34

,38.1
1v

    ,533.3

22

2
2

1

42

12

2
2

1

41













=
















=













=
















=

LAL
EI

LAL
EI

θρ
ω

θρ
ω

 
 
 

#1

#2#3

Exact solutions: 

.03.22      ,516.3
2

1

42

2
1

41 







=








=

AL
EI

AL
EI

ρ
ω

ρ
ω  

We can see that mode 1 is calculated much more accurately 
than mode 2, with one beam element. 
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III. Damping 
 
Two commonly used models for viscous damping. 
 

A.  Proportional Damping (Rayleigh Damping) 
KMC βα +=                                  (17) 

where the constants α & β are found from 

,
22

,
22 2

2
2

1

1
1 ω

βαωξ
ω
βαωξ +=+=  

with 2121  &  , , ξξωω  (damping ratio) being selected. 
 

D
am

pi
ng

 ra
tio

 
 
 
 
 
 
 
 
 
 
B. Modal Damping 

Incorporate the viscous damping in modal equations. 
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IV. Modal Equations 
Use the normal modes (modal matrix) to transform the 
coupled system of dynamic equations to uncoupled system of 
equations. 
We have 

[ ] n1,2,...,     ,2 ==− iii 0uMK ω                   (18) 

 where the normal mode iu  satisfies: 





=
=

,0
,0

j
T
i

j
T
i

uMu
uKu

   for i ≠ j, 

and 





=
=

,
,1
2
ii

T
i

i
T
i

ωuKu
uMu

  for i = 1, 2, …, n. 

Form the modal matrix: 
         [ ]nnn uuuΦ   21)( L=×                  (19) 

We can verify that 

.

,matrix) Spectral(

00
0

0
00

 

2
n

2
2

2
1

IMΦΦ

ΩKΦΦ

=



















==

T

T

ω

ω
ω

L

OM

M

L

   (20) 

Transformation for the displacement vector, 

zuuuu Φ=+++= nnzzz L2211 ,     (21) 
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 where  

                        


















=

)(

)(
)(

2

1

tz

tz
tz

n

M
z

are called principal coordinates. 
Substitute (21) into the dynamic equation: 

   ).( tfzKzCzM =Φ+Φ+Φ &&&

 Pre-multiply by ΦT, and apply (20): 
),( tpzzCz =Ω++ &&& φ                              (22) 

 where Ω+= βαφC      (for proportional damping), I

     p = . )( tT fΦ

 
 Introduce modal damping: 

  . (23) 


















=

nn ωξ

ωξ
ωξ

φ

20

20
002

22

11

L

MOM

L

C
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Equation (22) becomes, 
),(2 2 tpzzz iiiiiii =++ ωωξ &&&  i = 1,2,…,n. (24) 

Equations in (22) or (24) are called modal equations.  These 
equations are uncoupled, second-order differential equations, 
which are much easier to solve than the original dynamic 
equation (a coupled system). 
To recover u from z, apply transformation (21) again, once z 
is obtained from (24). 
 
Notes: 
• Only the first few modes may be needed in constructing 

the modal matrix Φ (i.e., Φ could be an n×m rectangular 
matrix with m<n).  Thus, significant reduction in the size 
of the system can be achieved. 

• Modal equations are best suited for problems in which 
higher modes are not important (i.e., structural vibrations, 
but not for structures under a shock load). 
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V. Frequency Response Analysis 
 (Harmonic Response Analysis) 

 

321&&&
loading Harmonic

sin tωFKuuCuM =++
                       (25) 

Modal method:  Apply the modal equations, 

    i=1,2,…,m.      (26) 
These are 1-D equations. Solutions are  

,sin2 2 tpzzz iiiiiii ωωωξ =++ &&&

                                   ),sin(
)2()1(

)(
222

2

i
iii

ii
i tptz θω

ηξη
ω

−
+−

=      (27) 

i

                                   where 

z

ω/ωi













==

=
−

=

ratiodamping ,
2

,

angle phase ,
1
2arctan

i

2

i

i

c

i
i

i

i

ii
i

m
c

c
c

ω
ξ

ωωη
η
ηξ

θ

 

   Recover u from (21). 
Direct Method:   Solve Eq. (25) directly, that is, calculate the 
inverse. With tie ωuu = (complex notation), Eq. (25) 
becomes 

[ ] .2 FuMCK =−+ ωωi  
This equation is expensive to solve and matrix is ill-
conditioned if ω is close to any ωi. 
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VI. Transient Response Analysis 
(Dynamic Response/Time-History Analysis) 

 
• Structure response to arbitrary, time-dependent loading. 

f(t)

t  

u(t)

t  
 
Compute responses by integrating through time: 

     

t 0  t 1  t 2                               t n  t n+1                                         

u 1

u 2

u n  u n+1

t
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 Equation of motion at instance nt , n = 0, 1, 2, 3, ⋅⋅⋅: 

.nnnn fKuuCuM =++ &&&  

Time increment:  ∆t=tn+1-tn, n=0, 1, 2, 3, ⋅⋅⋅. 
There are two categories of methods for transient analysis. 
 

A. Direct Methods (Direct Integration Methods) 
• Central Difference Method 

Approximate using finite difference: 

  
)2(

)(
1

),(
2

1

112

11

−+

−+

+−
∆

=

−
∆

=

nnnn

nnn

t

t

uuuu

uuu

&&

&

 

Dynamic equation becomes, 

,)(
2
1)2(

)(
1

11112 nnnnnnn tt
fKuuuCuuuM =+



 −

∆
+








+−

∆ −+−+  

which yields, 
)(1 tn FAu =+  

where  
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un+1 is calculated from un & un-1,  and solution is marching 
from  until convergent. ,,1,,1,0 LL +nn tttt
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This method is unstable if ∆t is too large. 
• Newmark Method: 

Use approximations: 

[ ]
[ ],)1(

)(,2)21(
2

)(

11

11

2

1

++

+++

+−∆+≈

=→+−
∆

+∆+≈

nnnn

nnnnnn

t

tt

uuuu

uuuuuu

&&&&&&

L&&&&&&&

γγ

ββ

where β & γ  are chosen constants.  These lead to 
)(1 tn FAu =+  

where 

).,,,,,,,,()(

,
)(

1

1

2

nnnn tft
tt

uuuMCfF

MCKA

&&&∆=
∆

+
∆

+=

+ βγ
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γ

 

This method is unconditionally stable if 

4
1 ,

2
1 .,.e

.
2
12

==

≥≥

βγ

γβ

g
 

which gives the constant average acceleration method. 
Direct methods can be expensive! (the need to compute 
A-1, often repeatedly for each time step). 
 

© 1997-2003 Yijun Liu, University of Cincinnati    174     



Lecture Notes:  Introduction to Finite Element Method                       Chapter 7.  Structural Vibration and Dynamics 

B. Modal Method 
First, do the transformation of the dynamic equations using 
the modal matrix before the time marching: 

),(2

,)(
1

tpzzz

tz

iiiiiii

m

i
ii

=++

Φ== ∑
=

ωωξ &&&

zuu
            i = 1,2,⋅⋅⋅, m. 

  Then, solve the uncoupled equations using an integration 
method.  Can use, e.g., 10%, of the total modes (m= n/10). 

• Uncoupled system, 
• Fewer equations, 
• No inverse of matrices, 
• More efficient for large problems. 

 
Comparisons of the Methods 

Direct Methods Modal Method 
• Small model 
• More accurate (with small ∆t) 
• Single loading 
• Shock loading 
• … 

• Large model 
• Higher modes ignored 
• Multiple loading 
• Periodic loading 
• … 
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Cautions in Dynamic Analysis 
• Symmetry: It should not be used in the dynamic analysis 

(normal modes, etc.) because symmetric structures can 
have antisymmetric modes. 

• Mechanism, rigid body motion means ω = 0.  Can use this 
to check FEA models to see if they are properly connected 
and/or supported. 

Input for FEA: loading F(t) or F(ω) can be very complicated in 
real applications and often needs to be filtered first before used as 
input for FEA. 
 

Examples 
 

Impact, drop tests, etc. 
 
 
 
 
 
 
 
 

Crash Analysis for a Car (from LS-DYNA3D) 
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Chapter 8.  Thermal Analysis 
 

 Two objectives: 
• Determine the temperature field (steady or unsteady state) 
• Stresses due to the temperature changes 

 

I. Temperature Field 
Fourier Heat Conduction Equation: 

 1-D Case:  

  
x
Tkf x ∂

∂
−= ,    (1) 

 where, 
  fx = heat flux per unit area, 
  k = thermal conductivity, x 
  T = T(x) = temperature. 
 3-D Case: 

  














∂∂
∂∂
∂∂

−=














zT
yT
xT

f
f
f

z

y

x

Κ ,    (2) 

 where, fx, fy, fz = heat flux in x, y and z direction, respectively, 
 and in case of isotropy, 

  .    (3) 










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


=

k
k

k

00
00
00

Κ
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 The Equation of Heat Flow is: 

  
t
Tcq

z
f

y
f

x
f

v
zyx

∂
∂

=+







∂
∂

+
∂
∂

+
∂
∂

− ρ     (4) 

 in which, 
  qv = rate of internal heat generation per unit volume, 
  c = specific heat, 
  ρ = mass density. 

For steady state ( 0=∂∂ tT ) and isotropic materials, we can 
obtain: 

  k .    (5) vqT −=∇2

 This a Poisson equation. 
  

 Boundary Conditions (BC’s): 
  

x 

y 

ST 

Sq 

n  
 
 
 
   
  ,T=T   on S ; T

  ,Q
n
T

=
∂
∂   on S .    (6) q

Note that at any point on the boundary S qT SS U= , only one 
type of BC can be specified. 
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 Finite Element Formulation for Heat Conduction: 
         (7) qTK =T

 where, 
  KT = conductivity matrix, 
  T = vector of nodal temperature, 
  q = vector of thermal loads. 
 
 The element conductivity matrix is given by: 
  k .     (8) ∫=

V

T
T dVΚBB

This is obtained in a similar way as for the structural analysis, 
e.g., by starting with the interpolation eT NT=  (N is the 
shape function matrix, Te the nodal temperature). 

 
Note that there is only one DOF at each node for the thermal 
problems.  

 
 Thermal Transient Analysis: 

  0≠
∂
∂

t
T . 

Apply FDM (use time steps and integrate in time), as in the 
transient structural analysis, to obtain the transient 
temperature fields. 
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II. Thermal Stress Analysis 
 

• Solve Eq. (7) first to obtain the temperature (change) 
fields. 

• Apply the temperature change ∆T as initial strains (or 
initial stresses) to the structure. 

 
 1-D Case: 
 
 
 
 
 Thermal Strain (Initial Strain): 

εo 

At temperature T2 

At temperature T1 

  To ∆= αε ,      (9) 

 in which, 
  α  = the coefficient of thermal expansion, 
  12 TTT −=∆  is the change of temperature. 

 Total strain, 
  oe εεε +=       (10) 

 with eε  being the elastic strain due to mechanical load.  

 That is, 
  TE ∆+= − ασε 1 ,     (11) 
 or )( oE εεσ −= .      (12) 
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Example: The above shown bar under thermal load T∆ . 
(a) If no constraint on the right-hand side, that is, the bar is 

free to expand to the right, then 
 0,0, === σεεε eo , 

 from Eq. (12). No thermal stress! 
(b) If there is a constraint on the right-hand side, that is, the 

bar can not expand to the right, then 
  TEToe ∆−=∆−=−== ασαεεε ,,0 , 

 from Eqs. (10) and (12). Thus, thermal stress exists! 
 
2-D Cases: 
Plane Stress, 

 .    (13) 
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Plane Strain, 

 .    (14) 
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ε

Here, ν  is the Poisson’s ratio. 
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3-D Case: 
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
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ε .    (15) 

Observation: Temperature changes do not yield shear strains. 
 
Total Strain: 
 .        (16) oe εεε +=

Stress-Strain Relation: 
 )( oe εεEEεσ −== .      (17) 

 
Thermal Stress Analysis Using the FEM: 
• Need to specify α  for the structure and T∆  on the related 

elements (which experience the temperature change). 
• Note that for linear thermoelasticity, same temperature 

change will yield same stresses, even if the structure is at 
two different temperatures. 

• Differences in the temperatures during the manufacturing 
and working environment are the main cause of thermal 
(residual) stresses.
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Further Reading 
 

1. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, 4th 
ed  (McGraw-Hill,  New York,  1989). 

2. J. N. Reddy, An Introduction To The Finite Element Method, 
Second Edition ed  (McGraw-Hill,  New York,  1993). 

3. R. D. Cook, Finite Element Modeling For Stress Analysis (John 
Wiley & Sons, Inc.,  New York,  1995). 

4. K. J. Bathe, Finite Element Procedures (Prentice Hall,  Englewood 
Cliffs, NJ,  1996). 

5. T. R. Chandrupatla and A. D. Belegundu, Introduction To Finite 
Elements in Engineering, 3rd ed  (Prentice Hall,  Upper Saddle 
River, NJ,  2002). 

6. R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt, Concepts 
and Applications of Finite Element Analysis, 4th ed  (John Wiley & 
Sons, Inc.,  New York,  2002). 

7. S. Moaveni, Finite Element Analysis - Theory and Application with 
ANSYS, 2nd ed  (Prentice-Hall,  Upper Saddle River, NJ,  2002). 
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